A Technical Report for ICCV 2021 VIPriors Re-identification Challenge
- URL: http://arxiv.org/abs/2109.15164v1
- Date: Thu, 30 Sep 2021 14:29:31 GMT
- Title: A Technical Report for ICCV 2021 VIPriors Re-identification Challenge
- Authors: Cen Liu, Yunbo Peng, Yue Lin
- Abstract summary: This paper introduces our solution for the re-identification track in VIPriors Challenge 2021.
It shows use state-of-the-art data processing strategies, model designs, and post-processing ensemble methods.
The final score of our team (ALONG) is 96.5154% mAP, ranking first in the leaderboard.
- Score: 5.940699390639281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Person re-identification has always been a hot and challenging task. This
paper introduces our solution for the re-identification track in VIPriors
Challenge 2021. In this challenge, the difficulty is how to train the model
from scratch without any pretrained weight. In our method, we show use
state-of-the-art data processing strategies, model designs, and post-processing
ensemble methods, it is possible to overcome the difficulty of data shortage
and obtain competitive results. (1) Both image augmentation strategy and novel
pre-processing method for occluded images can help the model learn more
discriminative features. (2) Several strong backbones and multiple loss
functions are used to learn more representative features. (3) Post-processing
techniques including re-ranking, automatic query expansion, ensemble learning,
etc., significantly improve the final performance. The final score of our team
(ALONG) is 96.5154% mAP, ranking first in the leaderboard.
Related papers
- One-Shot Image Restoration [0.0]
Experimental results demonstrate the applicability, robustness and computational efficiency of the proposed approach for supervised image deblurring and super-resolution.
Our results showcase significant improvement of learning models' sample efficiency, generalization and time complexity.
arXiv Detail & Related papers (2024-04-26T14:03:23Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Boosting Visual-Language Models by Exploiting Hard Samples [126.35125029639168]
HELIP is a cost-effective strategy tailored to enhance the performance of existing CLIP models.
Our method allows for effortless integration with existing models' training pipelines.
On comprehensive benchmarks, HELIP consistently boosts existing models to achieve leading performance.
arXiv Detail & Related papers (2023-05-09T07:00:17Z) - Let's Enhance: A Deep Learning Approach to Extreme Deblurring of Text
Images [3.441021278275805]
This work presents a novel deep-learning-based pipeline for the inverse problem of image deblurring.
Our results build on our winning submission to the recent Helsinki Deblurring Challenge 2021, whose goal was to explore the limits of state-of-the-art deblurring algorithms.
arXiv Detail & Related papers (2022-11-18T09:06:56Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - The Second Place Solution for ICCV2021 VIPriors Instance Segmentation
Challenge [6.087398773657721]
The Visual Inductive Priors(VIPriors) for Data-Efficient Computer Vision challenges ask competitors to train models from scratch in a data-deficient setting.
We introduce the technical details of our submission to the ICCV 2021 VIPriors instance segmentation challenge.
Our approach can achieve 40.2%AP@0.50:0.95 on the test set of ICCV 2021 VIPriors instance segmentation challenge.
arXiv Detail & Related papers (2021-12-02T09:23:02Z) - An Empirical Study of Vehicle Re-Identification on the AI City Challenge [19.13038665501964]
The Track2 is a vehicle re-identification (ReID) task with both the real-world data and synthetic data.
We mainly focus on four points, i.e. training data, unsupervised domain-adaptive (UDA) training, post-processing, model ensembling in this challenge.
With aforementioned techniques, our method finally achieves 0.7445 mAP score, yielding the first place in the competition.
arXiv Detail & Related papers (2021-05-20T12:20:52Z) - Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then
Training It Toughly [114.81028176850404]
Training generative adversarial networks (GANs) with limited data generally results in deteriorated performance and collapsed models.
We decompose the data-hungry GAN training into two sequential sub-problems.
Such a coordinated framework enables us to focus on lower-complexity and more data-efficient sub-problems.
arXiv Detail & Related papers (2021-02-28T05:20:29Z) - A Technical Report for VIPriors Image Classification Challenge [25.421167550087205]
This paper is a brief report to our submission to the VIPriors Image Classification Challenge.
In this challenge, the difficulty is how to train the model from scratch without any pretrained weight.
The final Top-1 accuracy of our team DeepBlueAI is 0.7015, ranking second in the leaderboard.
arXiv Detail & Related papers (2020-07-17T02:30:09Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
We propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation.
This eliminates the most time-consuming and tedious inter-camera identity labelling process.
We formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method for Intra-Camera Supervised (ICS) person re-id.
arXiv Detail & Related papers (2020-02-12T15:26:33Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.