A Novel Simplified Swarm Optimization for Generalized Reliability
Redundancy Allocation Problem
- URL: http://arxiv.org/abs/2110.00133v1
- Date: Fri, 1 Oct 2021 00:12:11 GMT
- Title: A Novel Simplified Swarm Optimization for Generalized Reliability
Redundancy Allocation Problem
- Authors: Zhenyao Liu, Jen-Hsuan Chen, Shi-Yi Tan, Wei-Chang Yeh
- Abstract summary: This study proposes a novel RRAP called General RRAP (GRRAP) to be applied to network systems.
Since GRRAP is an NP-hard problem, a new algorithm called Binary-addition simplified swarm optimization (BSSO) is also proposed in this study.
- Score: 1.2043574473965315
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Network systems are commonly used in various fields, such as power grid,
Internet of Things (IoT), and gas networks. Reliability redundancy allocation
problem (RRAP) is a well-known reliability design tool, which needs to be
developed when the system is extended from the series-parallel structure to a
more general network structure. Therefore, this study proposes a novel RRAP
called General RRAP (GRRAP) to be applied to network systems. The Binary
Addition Tree Algorithm (BAT) is used to solve the network reliability. Since
GRRAP is an NP-hard problem, a new algorithm called Binary-addition simplified
swarm optimization (BSSO) is also proposed in this study. BSSO combines the
accuracy of the BAT with the efficiency of SSO, which can effectively reduce
the solution space and speed up the time to find high-quality solutions. The
experimental results show that BSSO outperforms three well-known algorithms,
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Swarm
Optimization (SSO), on six network benchmarks.
Related papers
- Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Novel General Active Reliability Redundancy Allocation Problems and
Algorithm [1.5990720051907859]
The reliability redundancy allocation problem (RRAP) is used to maximize system reliability.
A novel RRAP, called the general RRAP (GRRAP), is proposed to extend the series-parallel structure or bridge network to a more general network structure.
To solve the proposed novel GRRAP, a new algorithm, called the BAT-SSOA3, used the simplified swarm optimization (SSO) to update solutions.
arXiv Detail & Related papers (2021-08-18T11:54:42Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
Massive access is a critical design challenge of Internet of Things (IoT) networks.
We consider the grant-free uplink transmission of an IoT network with a multiple-antenna base station (BS) and a large number of single-antenna IoT devices.
We propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness.
arXiv Detail & Related papers (2021-06-19T05:23:05Z) - Large Scale Global Optimization Algorithms for IoT Networks: A
Comparative Study [29.884417706421218]
This work studies the optimization of a wireless sensor network (WNS) at higher dimensions by focusing on the power allocation of decentralized detection.
We apply and compare four algorithms designed to tackle Large scale global optimization (LGSO) problems.
We evaluate the algorithms performance in several different cases by applying them in cases with 300, 600 and 800 dimensions.
arXiv Detail & Related papers (2021-02-22T18:59:22Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
This paper proposes a trilevel neural architecture search (NAS) method for efficient single image super-resolution (SR)
For modeling the discrete search space, we apply a new continuous relaxation on the discrete search spaces to build a hierarchical mixture of network-path, cell-operations, and kernel-width.
An efficient search algorithm is proposed to perform optimization in a hierarchical supernet manner.
arXiv Detail & Related papers (2021-01-17T12:19:49Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.