TyXe: Pyro-based Bayesian neural nets for Pytorch
- URL: http://arxiv.org/abs/2110.00276v1
- Date: Fri, 1 Oct 2021 09:04:26 GMT
- Title: TyXe: Pyro-based Bayesian neural nets for Pytorch
- Authors: Hippolyt Ritter, Theofanis Karaletsos
- Abstract summary: We introduce TyXe, a Bayesian neural network library built on top of Pytorch and Pyro.
Our leading design principle is to cleanly separate architecture, prior, inference and likelihood specification.
In contrast to existing packages TyXe does not implement any layer classes, and instead relies on architectures defined in generic Pytorch code.
- Score: 12.343312954353639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce TyXe, a Bayesian neural network library built on top of Pytorch
and Pyro. Our leading design principle is to cleanly separate architecture,
prior, inference and likelihood specification, allowing for a flexible workflow
where users can quickly iterate over combinations of these components. In
contrast to existing packages TyXe does not implement any layer classes, and
instead relies on architectures defined in generic Pytorch code. TyXe then
provides modular choices for canonical priors, variational guides, inference
techniques, and layer selections for a Bayesian treatment of the specified
architecture. Sampling tricks for variance reduction, such as local
reparameterization or flipout, are implemented as effect handlers, which can be
applied independently of other specifications. We showcase the ease of use of
TyXe to explore Bayesian versions of popular models from various libraries: toy
regression with a pure Pytorch neural network; large-scale image classification
with torchvision ResNets; graph neural networks based on DGL; and Neural
Radiance Fields built on top of Pytorch3D. Finally, we provide convenient
abstractions for variational continual learning. In all cases the change from a
deterministic to a Bayesian neural network comes with minimal modifications to
existing code, offering a broad range of researchers and practitioners alike
practical access to uncertainty estimation techniques. The library is available
at https://github.com/TyXe-BDL/TyXe.
Related papers
- Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.
Our approach is capable of encoding neural networks in a model zoo of mixed architecture.
We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfn is a PyTorch library that aims to address this need.
It provides users with a simple API for environments and useful abstractions for samplers and losses.
arXiv Detail & Related papers (2023-05-24T00:20:59Z) - cito: An R package for training neural networks using torch [0.0]
'cito' is a user-friendly R package for deep learning (DL) applications.
It allows specifying DNNs in the familiar formula syntax used by many R packages.
'cito' includes many user-friendly functions for model plotting and analysis.
arXiv Detail & Related papers (2023-03-16T18:54:20Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - TorchNTK: A Library for Calculation of Neural Tangent Kernels of PyTorch
Models [16.30276204466139]
We introduce torchNTK, a python library to calculate the empirical neural tangent kernel (NTK) of neural network models in the PyTorch framework.
A feature of the library is that we expose the user to layerwise NTK components, and show that in some regimes a layerwise calculation is more memory efficient.
arXiv Detail & Related papers (2022-05-24T21:27:58Z) - Towards Disentangling Information Paths with Coded ResNeXt [11.884259630414515]
We take a novel approach to enhance the transparency of the function of the whole network.
We propose a neural network architecture for classification, in which the information that is relevant to each class flows through specific paths.
arXiv Detail & Related papers (2022-02-10T21:45:49Z) - TensorX: Extensible API for Neural Network Model Design and Deployment [0.0]
TensorFlowX is a Python library for prototyping, design, and deployment of complex neural network models in computation.
A special emphasis is put on ease of use, performance, and API consistency.
arXiv Detail & Related papers (2020-12-29T00:15:38Z) - Embedded methods for feature selection in neural networks [0.0]
Black box models like neural networks negatively affect the interpretability, generalizability, and the training time of these models.
I propose two integrated approaches for feature selection that can be incorporated directly into the parameter learning.
I benchmarked both the methods against Permutation Feature Importance (PFI) - a general-purpose feature ranking method and a random baseline.
arXiv Detail & Related papers (2020-10-12T16:33:46Z) - Captum: A unified and generic model interpretability library for PyTorch [49.72749684393332]
We introduce a novel, unified, open-source model interpretability library for PyTorch.
The library contains generic implementations of a number of gradient and perturbation-based attribution algorithms.
It can be used for both classification and non-classification models.
arXiv Detail & Related papers (2020-09-16T18:57:57Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.