Equivariance with Learned Canonicalization Functions
- URL: http://arxiv.org/abs/2211.06489v3
- Date: Fri, 7 Jul 2023 15:55:35 GMT
- Title: Equivariance with Learned Canonicalization Functions
- Authors: S\'ekou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio,
Siamak Ravanbakhsh
- Abstract summary: We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
- Score: 77.32483958400282
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Symmetry-based neural networks often constrain the architecture in order to
achieve invariance or equivariance to a group of transformations. In this
paper, we propose an alternative that avoids this architectural constraint by
learning to produce canonical representations of the data. These
canonicalization functions can readily be plugged into non-equivariant backbone
architectures. We offer explicit ways to implement them for some groups of
interest. We show that this approach enjoys universality while providing
interpretable insights. Our main hypothesis, supported by our empirical
results, is that learning a small neural network to perform canonicalization is
better than using predefined heuristics. Our experiments show that learning the
canonicalization function is competitive with existing techniques for learning
equivariant functions across many tasks, including image classification,
$N$-body dynamics prediction, point cloud classification and part segmentation,
while being faster across the board.
Related papers
- From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication [19.336940758147442]
It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases.
We introduce a versatile method to directly incorporate a set of invariances into the representations, constructing a product space of invariant components on top of the latent representations.
We validate our solution on classification and reconstruction tasks, observing consistent latent similarity and downstream performance improvements in a zero-shot stitching setting.
arXiv Detail & Related papers (2023-10-02T13:55:38Z) - Equivariant Transduction through Invariant Alignment [71.45263447328374]
We introduce a novel group-equivariant architecture that incorporates a group-in hard alignment mechanism.
We find that our network's structure allows it to develop stronger equivariant properties than existing group-equivariant approaches.
We additionally find that it outperforms previous group-equivariant networks empirically on the SCAN task.
arXiv Detail & Related papers (2022-09-22T11:19:45Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Training or Architecture? How to Incorporate Invariance in Neural
Networks [14.162739081163444]
We propose a method for provably invariant network architectures with respect to group actions.
In a nutshell, we intend to 'undo' any possible transformation before feeding the data into the actual network.
We analyze properties of such approaches, extend them to equivariant networks, and demonstrate their advantages in terms of robustness as well as computational efficiency in several numerical examples.
arXiv Detail & Related papers (2021-06-18T10:31:00Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - More Is More -- Narrowing the Generalization Gap by Adding
Classification Heads [8.883733362171032]
We introduce an architecture enhancement for existing neural network models based on input transformations, termed 'TransNet'
Our model can be employed during training time only and then pruned for prediction, resulting in an equivalent architecture to the base model.
arXiv Detail & Related papers (2021-02-09T16:30:33Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.