Score-Based Generative Classifiers
- URL: http://arxiv.org/abs/2110.00473v1
- Date: Fri, 1 Oct 2021 15:05:33 GMT
- Title: Score-Based Generative Classifiers
- Authors: Roland S. Zimmermann, Lukas Schott, Yang Song, Benjamin A. Dunn, David
A. Klindt
- Abstract summary: Generative models have been used as adversarially robust classifiers on simple datasets such as MNIST.
Previous results have suggested a trade-off between the likelihood of the data and classification accuracy.
We show that score-based generative models are closing the gap in classification accuracy compared to standard discriminative models.
- Score: 9.063815952852783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tremendous success of generative models in recent years raises the
question whether they can also be used to perform classification. Generative
models have been used as adversarially robust classifiers on simple datasets
such as MNIST, but this robustness has not been observed on more complex
datasets like CIFAR-10. Additionally, on natural image datasets, previous
results have suggested a trade-off between the likelihood of the data and
classification accuracy. In this work, we investigate score-based generative
models as classifiers for natural images. We show that these models not only
obtain competitive likelihood values but simultaneously achieve
state-of-the-art classification accuracy for generative classifiers on
CIFAR-10. Nevertheless, we find that these models are only slightly, if at all,
more robust than discriminative baseline models on out-of-distribution tasks
based on common image corruptions. Similarly and contrary to prior results, we
find that score-based are prone to worst-case distribution shifts in the form
of adversarial perturbations. Our work highlights that score-based generative
models are closing the gap in classification accuracy compared to standard
discriminative models. While they do not yet deliver on the promise of
adversarial and out-of-domain robustness, they provide a different approach to
classification that warrants further research.
Related papers
- DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
We propose DECIDER, a novel approach that leverages priors from large language models (LLMs) and vision-language models (VLMs) to detect failures in image models.
DECIDER consistently achieves state-of-the-art failure detection performance, significantly outperforming baselines in terms of the overall Matthews correlation coefficient.
arXiv Detail & Related papers (2024-08-01T07:08:11Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Generative Robust Classification [3.4773470589069477]
Training adversarially robust discriminative (i.e., softmax) classification has been the dominant approach to robust classification.
We investigate using adversarial training (AT)-based generative models.
We find it straightforward to apply advanced data augmentation to achieve better robustness in our approach.
arXiv Detail & Related papers (2022-12-14T15:33:11Z) - on the effectiveness of generative adversarial network on anomaly
detection [1.6244541005112747]
GANs rely on the rich contextual information of these models to identify the actual training distribution.
We suggest a new unsupervised model based on GANs --a combination of an autoencoder and a GAN.
A new scoring function was introduced to target anomalies where a linear combination of the internal representation of the discriminator and the generator's visual representation, plus the encoded representation of the autoencoder, come together to define the proposed anomaly score.
arXiv Detail & Related papers (2021-12-31T16:35:47Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
We argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions.
To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space.
arXiv Detail & Related papers (2021-06-23T10:52:29Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Model Rectification via Unknown Unknowns Extraction from Deployment
Samples [8.0497115494227]
We propose a general algorithmic framework that aims to perform a post-training model rectification at deployment time in a supervised way.
RTSCV extracts unknown unknowns (u.u.s)
We show that RTSCV consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2021-02-08T11:46:19Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.