Model Rectification via Unknown Unknowns Extraction from Deployment
Samples
- URL: http://arxiv.org/abs/2102.04145v1
- Date: Mon, 8 Feb 2021 11:46:19 GMT
- Title: Model Rectification via Unknown Unknowns Extraction from Deployment
Samples
- Authors: Bruno Abrahao, Zheng Wang, Haider Ahmed, Yuchen Zhu
- Abstract summary: We propose a general algorithmic framework that aims to perform a post-training model rectification at deployment time in a supervised way.
RTSCV extracts unknown unknowns (u.u.s)
We show that RTSCV consistently outperforms state-of-the-art approaches.
- Score: 8.0497115494227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model deficiency that results from incomplete training data is a form of
structural blindness that leads to costly errors, oftentimes with high
confidence. During the training of classification tasks, underrepresented
class-conditional distributions that a given hypothesis space can recognize
results in a mismatch between the model and the target space. To mitigate the
consequences of this discrepancy, we propose Random Test Sampling and
Cross-Validation (RTSCV) as a general algorithmic framework that aims to
perform a post-training model rectification at deployment time in a supervised
way. RTSCV extracts unknown unknowns (u.u.s), i.e., examples from the
class-conditional distributions that a classifier is oblivious to, and works in
combination with a diverse family of modern prediction models. RTSCV augments
the training set with a sample of the test set (or deployment data) and uses
this redefined class layout to discover u.u.s via cross-validation, without
relying on active learning or budgeted queries to an oracle. We contribute a
theoretical analysis that establishes performance guarantees based on the
design bases of modern classifiers. Our experimental evaluation demonstrates
RTSCV's effectiveness, using 7 benchmark tabular and computer vision datasets,
by reducing a performance gap as large as 41% from the respective
pre-rectification models. Last we show that RTSCV consistently outperforms
state-of-the-art approaches.
Related papers
- DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization [44.291382840373]
This paper addresses the challenge of out-of-distribution generalization in graph machine learning.
Traditional graph learning algorithms falter in real-world scenarios where this assumption fails.
A principal factor contributing to this suboptimal performance is the inherent simplicity bias of neural networks.
arXiv Detail & Related papers (2024-08-08T12:08:55Z) - Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification [2.1223532600703385]
This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks.
By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.
This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
arXiv Detail & Related papers (2024-04-23T11:40:52Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Estimating the Prediction Performance of Spatial Models via Spatial
k-Fold Cross Validation [1.7205106391379026]
In machine learning one often assumes the data are independent when evaluating model performance.
spatial autocorrelation (SAC) causes the standard cross validation (CV) methods to produce optimistically biased prediction performance estimates.
We propose a modified version of the CV method called spatial k-fold cross validation (SKCV) which provides a useful estimate for model prediction performance without optimistic bias due to SAC.
arXiv Detail & Related papers (2020-05-28T19:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.