Inexact bilevel stochastic gradient methods for constrained and
unconstrained lower-level problems
- URL: http://arxiv.org/abs/2110.00604v3
- Date: Mon, 6 Nov 2023 21:55:19 GMT
- Title: Inexact bilevel stochastic gradient methods for constrained and
unconstrained lower-level problems
- Authors: Tommaso Giovannelli, Griffin Dean Kent, Luis Nunes Vicente
- Abstract summary: Two-level formula search optimization has become instrumental in a number of machine learning contexts.
New low-rank bi-level gradient methods are developed that do not require second-order derivatives.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-level stochastic optimization formulations have become instrumental in a
number of machine learning contexts such as continual learning, neural
architecture search, adversarial learning, and hyperparameter tuning. Practical
stochastic bilevel optimization problems become challenging in optimization or
learning scenarios where the number of variables is high or there are
constraints.
In this paper, we introduce a bilevel stochastic gradient method for bilevel
problems with nonlinear and possibly nonconvex lower-level constraints. We also
present a comprehensive convergence theory that addresses both the lower-level
unconstrained and constrained cases and covers all inexact calculations of the
adjoint gradient (also called hypergradient), such as the inexact solution of
the lower-level problem, inexact computation of the adjoint formula (due to the
inexact solution of the adjoint equation or use of a truncated Neumann series),
and noisy estimates of the gradients, Hessians, and Jacobians involved. To
promote the use of bilevel optimization in large-scale learning, we have
developed new low-rank practical bilevel stochastic gradient methods (BSG-N-FD
and~BSG-1) that do not require second-order derivatives and, in the lower-level
unconstrained case, dismiss any matrix-vector products.
Related papers
- An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness [15.656614304616006]
This paper investigates a class of bilevel optimization problems where the upper-level function is non- unbounded smoothness and the lower-level problem is strongly convex.
These problems have significant applications in data learning, such as text classification using neural networks.
arXiv Detail & Related papers (2024-09-28T02:30:44Z) - A Generalized Alternating Method for Bilevel Learning under the
Polyak-{\L}ojasiewicz Condition [63.66516306205932]
Bilevel optimization has recently regained interest owing to its applications in emerging machine learning fields.
Recent results have shown that simple alternating iteration-based iterations can match interest owing to convex lower-level objective.
arXiv Detail & Related papers (2023-06-04T17:54:11Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
Bilevel optimization has been developed with large-scale high-dimensional data.
This paper considers a constrained bilevel problem with convex and non-differentiable approximations.
arXiv Detail & Related papers (2023-02-03T19:34:56Z) - A Fast and Convergent Proximal Algorithm for Regularized Nonconvex and
Nonsmooth Bi-level Optimization [26.68351521813062]
Existing bi-level algorithms cannot handle nonsmooth or hyper-smooth regularizers.
In this paper, we show that an implicit differentiation (AID) scheme can be used to speed up comprehensive machine learning applications.
arXiv Detail & Related papers (2022-03-30T18:53:04Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
We propose a bilevel optimization method based on Bregman Bregman functions.
We also propose an accelerated version of SBiO-BreD method (ASBiO-BreD) by using the variance-reduced technique.
arXiv Detail & Related papers (2021-07-26T16:18:43Z) - A Value-Function-based Interior-point Method for Non-convex Bi-level
Optimization [38.75417864443519]
Bi-level optimization model is able to capture a wide range of complex learning tasks with practical interest.
We propose a new interior Bi-level Value-based Interior-point scheme, we penalize the regularized value function of the lower level problem into the upper level objective.
arXiv Detail & Related papers (2021-06-15T09:10:40Z) - Convergence Properties of Stochastic Hypergradients [38.64355126221992]
We study approximation schemes for the hypergradient, which are important when the lower-level problem is empirical risk on a large dataset.
We provide numerical experiments to support our theoretical analysis and to show the advantage of using hypergradients in practice.
arXiv Detail & Related papers (2020-11-13T20:50:36Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.