A Value-Function-based Interior-point Method for Non-convex Bi-level
Optimization
- URL: http://arxiv.org/abs/2106.07991v1
- Date: Tue, 15 Jun 2021 09:10:40 GMT
- Title: A Value-Function-based Interior-point Method for Non-convex Bi-level
Optimization
- Authors: Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, Jin Zhang
- Abstract summary: Bi-level optimization model is able to capture a wide range of complex learning tasks with practical interest.
We propose a new interior Bi-level Value-based Interior-point scheme, we penalize the regularized value function of the lower level problem into the upper level objective.
- Score: 38.75417864443519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bi-level optimization model is able to capture a wide range of complex
learning tasks with practical interest. Due to the witnessed efficiency in
solving bi-level programs, gradient-based methods have gained popularity in the
machine learning community. In this work, we propose a new gradient-based
solution scheme, namely, the Bi-level Value-Function-based Interior-point
Method (BVFIM). Following the main idea of the log-barrier interior-point
scheme, we penalize the regularized value function of the lower level problem
into the upper level objective. By further solving a sequence of differentiable
unconstrained approximation problems, we consequently derive a sequential
programming scheme. The numerical advantage of our scheme relies on the fact
that, when gradient methods are applied to solve the approximation problem, we
successfully avoid computing any expensive Hessian-vector or Jacobian-vector
product. We prove the convergence without requiring any convexity assumption on
either the upper level or the lower level objective. Experiments demonstrate
the efficiency of the proposed BVFIM on non-convex bi-level problems.
Related papers
- Constrained Bi-Level Optimization: Proximal Lagrangian Value function
Approach and Hessian-free Algorithm [8.479947546216131]
We develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)
LV-HBA is especially well-suited for machine learning applications.
arXiv Detail & Related papers (2024-01-29T13:50:56Z) - A Generalized Alternating Method for Bilevel Learning under the
Polyak-{\L}ojasiewicz Condition [63.66516306205932]
Bilevel optimization has recently regained interest owing to its applications in emerging machine learning fields.
Recent results have shown that simple alternating iteration-based iterations can match interest owing to convex lower-level objective.
arXiv Detail & Related papers (2023-06-04T17:54:11Z) - On Penalty-based Bilevel Gradient Descent Method [40.27047651949238]
We tackle the bilevel problem through the lens of the penalty method.
We propose the penalty-based bilevel gradient descent (PBGD) algorithm.
Experiments showcase the efficiency of the proposed PBGD algorithm.
arXiv Detail & Related papers (2023-02-10T11:30:19Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
Bilevel optimization has been developed with large-scale high-dimensional data.
This paper considers a constrained bilevel problem with convex and non-differentiable approximations.
arXiv Detail & Related papers (2023-02-03T19:34:56Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Value-Function-based Sequential Minimization for Bi-level Optimization [52.39882976848064]
gradient-based Bi-Level Optimization (BLO) methods have been widely applied to handle modern learning tasks.
There are almost no gradient-based methods able to solve BLO in challenging scenarios, such as BLO with functional constraints and pessimistic BLO.
We provide Bi-level Value-Function-based Sequential Minimization (BVFSM) to address the above issues.
arXiv Detail & Related papers (2021-10-11T03:13:39Z) - Inexact bilevel stochastic gradient methods for constrained and
unconstrained lower-level problems [0.0]
Two-level formula search optimization has become instrumental in a number of machine learning contexts.
New low-rank bi-level gradient methods are developed that do not require second-order derivatives.
arXiv Detail & Related papers (2021-10-01T18:20:14Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
We propose a bilevel optimization method based on Bregman Bregman functions.
We also propose an accelerated version of SBiO-BreD method (ASBiO-BreD) by using the variance-reduced technique.
arXiv Detail & Related papers (2021-07-26T16:18:43Z) - A Generic Descent Aggregation Framework for Gradient-based Bi-level
Optimization [41.894281911990554]
We develop a novel Bi-level Descent Aggregation (BDA) framework for bi-level learning tasks.
BDA aggregates hierarchical objectives of both upper level and lower level.
We propose a new proof recipe to improve the convergence results of conventional gradient-based bi-level methods.
arXiv Detail & Related papers (2021-02-16T06:58:12Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.