Multi-lane Cruising Using Hierarchical Planning and Reinforcement
Learning
- URL: http://arxiv.org/abs/2110.00650v1
- Date: Fri, 1 Oct 2021 21:03:39 GMT
- Title: Multi-lane Cruising Using Hierarchical Planning and Reinforcement
Learning
- Authors: Kasra Rezaee, Peyman Yadmellat, Masoud S. Nosrati, Elmira Amirloo
Abolfathi, Mohammed Elmahgiubi, Jun Luo
- Abstract summary: Multi-lane cruising requires using lane changes and within-lane maneuvers to achieve good speed and maintain safety.
This paper proposes a design for autonomous multi-lane cruising by combining a hierarchical reinforcement learning framework with a novel state-action space abstraction.
- Score: 3.7438459768783794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Competent multi-lane cruising requires using lane changes and within-lane
maneuvers to achieve good speed and maintain safety. This paper proposes a
design for autonomous multi-lane cruising by combining a hierarchical
reinforcement learning framework with a novel state-action space abstraction.
While the proposed solution follows the classical hierarchy of behavior
decision, motion planning and control, it introduces a key intermediate
abstraction within the motion planner to discretize the state-action space
according to high level behavioral decisions. We argue that this design allows
principled modular extension of motion planning, in contrast to using either
monolithic behavior cloning or a large set of hand-written rules. Moreover, we
demonstrate that our state-action space abstraction allows transferring of the
trained models without retraining from a simulated environment with virtually
no dynamics to one with significantly more realistic dynamics. Together, these
results suggest that our proposed hierarchical architecture is a promising way
to allow reinforcement learning to be applied to complex multi-lane cruising in
the real world.
Related papers
- Deep hybrid models: infer and plan in the real world [0.0]
We present an effective solution, based on active inference, to complex control tasks.
The proposed architecture exploits hybrid (discrete and continuous) processing to construct a hierarchical and dynamic representation of the self and the environment.
We evaluate this deep hybrid model on a non-trivial task: reaching a moving object after having picked a moving tool.
arXiv Detail & Related papers (2024-02-01T15:15:25Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
We propose a foundation model which leverages expert foundation model trained on language, vision and action data individually together to solve long-horizon tasks.
We use a large language model to construct symbolic plans that are grounded in the environment through a large video diffusion model.
Generated video plans are then grounded to visual-motor control, through an inverse dynamics model that infers actions from generated videos.
arXiv Detail & Related papers (2023-09-15T17:44:05Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Behavior Planning at Urban Intersections through Hierarchical
Reinforcement Learning [25.50973559614565]
In this work, we propose a behavior planning structure based on reinforcement learning (RL) which is capable of performing autonomous vehicle behavior planning with a hierarchical structure in simulated urban environments.
Our algorithms can perform better than rule-based methods for elective decisions such as when to turn left between vehicles approaching from the opposite direction or possible lane-change when approaching an intersection due to lane blockage or delay in front of the ego car.
Results also show that the proposed method converges to an optimal policy faster than traditional RL methods.
arXiv Detail & Related papers (2020-11-09T19:23:26Z) - Robot Navigation in Constrained Pedestrian Environments using
Reinforcement Learning [32.454250811667904]
Navigating fluently around pedestrians is a necessary capability for mobile robots deployed in human environments.
We present an approach based on reinforcement learning to learn policies capable of dynamic adaptation to the presence of moving pedestrians.
We show transfer of the learned policy to unseen 3D reconstructions of two real environments.
arXiv Detail & Related papers (2020-10-16T19:40:08Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method.
We decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner.
Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption.
arXiv Detail & Related papers (2020-07-30T20:14:42Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
We propose a novel framework called Jump-Operator Dynamic Programming for quickly computing solutions within a super-exponential space of sequential sub-goal tasks.
This approach involves controlling over an ensemble of reusable goal-conditioned polices functioning as temporally extended actions.
We then identify classes of objective functions on this subspace whose solutions are invariant to the grounding, resulting in optimal zero-shot transfer.
arXiv Detail & Related papers (2020-07-06T05:13:20Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.