Diffusion-Based Planning for Autonomous Driving with Flexible Guidance
- URL: http://arxiv.org/abs/2501.15564v2
- Date: Sun, 09 Feb 2025 16:37:09 GMT
- Title: Diffusion-Based Planning for Autonomous Driving with Flexible Guidance
- Authors: Yinan Zheng, Ruiming Liang, Kexin Zheng, Jinliang Zheng, Liyuan Mao, Jianxiong Li, Weihao Gu, Rui Ai, Shengbo Eben Li, Xianyuan Zhan, Jingjing Liu,
- Abstract summary: We propose a novel transformer-based Diffusion Planner for closed-loop planning.
Our model supports joint modeling of both prediction and planning tasks.
It achieves state-of-the-art closed-loop performance with robust transferability in diverse driving styles.
- Score: 19.204115959760788
- License:
- Abstract: Achieving human-like driving behaviors in complex open-world environments is a critical challenge in autonomous driving. Contemporary learning-based planning approaches such as imitation learning methods often struggle to balance competing objectives and lack of safety assurance,due to limited adaptability and inadequacy in learning complex multi-modal behaviors commonly exhibited in human planning, not to mention their strong reliance on the fallback strategy with predefined rules. We propose a novel transformer-based Diffusion Planner for closed-loop planning, which can effectively model multi-modal driving behavior and ensure trajectory quality without any rule-based refinement. Our model supports joint modeling of both prediction and planning tasks under the same architecture, enabling cooperative behaviors between vehicles. Moreover, by learning the gradient of the trajectory score function and employing a flexible classifier guidance mechanism, Diffusion Planner effectively achieves safe and adaptable planning behaviors. Evaluations on the large-scale real-world autonomous planning benchmark nuPlan and our newly collected 200-hour delivery-vehicle driving dataset demonstrate that Diffusion Planner achieves state-of-the-art closed-loop performance with robust transferability in diverse driving styles.
Related papers
- End-to-End Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
Trajectory prediction and planning are fundamental components for autonomous vehicles to navigate safely and efficiently in dynamic environments.
Traditionally, these components have often been treated as separate modules, limiting the ability to perform interactive planning.
We present a novel unified and data-driven framework that integrates prediction and planning with a single consistency model.
arXiv Detail & Related papers (2025-02-12T00:26:01Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Adaptive Planning with Generative Models under Uncertainty [20.922248169620783]
Planning with generative models has emerged as an effective decision-making paradigm across a wide range of domains.
While continuous replanning at each timestep might seem intuitive because it allows decisions to be made based on the most recent environmental observations, it results in substantial computational challenges.
Our work addresses this challenge by introducing a simple adaptive planning policy that leverages the generative model's ability to predict long-horizon state trajectories.
arXiv Detail & Related papers (2024-08-02T18:07:53Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Interpretable and Flexible Target-Conditioned Neural Planners For
Autonomous Vehicles [22.396215670672852]
Prior work only learns to estimate a single planning trajectory, while there may be multiple acceptable plans in real-world scenarios.
We propose an interpretable neural planner to regress a heatmap, which effectively represents multiple potential goals in the bird's-eye view of an autonomous vehicle.
Our systematic evaluation on the Lyft Open dataset shows that our model achieves a safer and more flexible driving performance than prior works.
arXiv Detail & Related papers (2023-09-23T22:13:03Z) - Interpretable Motion Planner for Urban Driving via Hierarchical
Imitation Learning [5.280496662905411]
We introduce a hierarchical planning architecture including a high-level grid-based behavior planner and a low-level trajectory planner.
As the high-level planner is responsible for finding a consistent route, the low-level planner generates a feasible trajectory.
We evaluate our method both in closed-loop simulation and real world driving, and demonstrate the neural network planner has outstanding performance.
arXiv Detail & Related papers (2023-03-24T13:18:40Z) - How To Not Drive: Learning Driving Constraints from Demonstration [0.0]
We propose a new scheme to learn motion planning constraints from human driving trajectories.
The behavioral planning is responsible for high-level decision making required to follow traffic rules.
The motion planner role is to generate feasible, safe trajectories for a self-driving vehicle to follow.
arXiv Detail & Related papers (2021-10-01T20:47:04Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.