Sparse Deep Learning: A New Framework Immune to Local Traps and
Miscalibration
- URL: http://arxiv.org/abs/2110.00653v1
- Date: Fri, 1 Oct 2021 21:16:34 GMT
- Title: Sparse Deep Learning: A New Framework Immune to Local Traps and
Miscalibration
- Authors: Yan Sun, Wenjun Xiong, Faming Liang
- Abstract summary: We provide a new framework for sparse deep learning, which has the above issues addressed in a coherent way.
We lay down a theoretical foundation for sparse deep learning and propose prior annealing algorithms for learning sparse neural networks.
- Score: 12.05471394131891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has powered recent successes of artificial intelligence (AI).
However, the deep neural network, as the basic model of deep learning, has
suffered from issues such as local traps and miscalibration. In this paper, we
provide a new framework for sparse deep learning, which has the above issues
addressed in a coherent way. In particular, we lay down a theoretical
foundation for sparse deep learning and propose prior annealing algorithms for
learning sparse neural networks. The former has successfully tamed the sparse
deep neural network into the framework of statistical modeling, enabling
prediction uncertainty correctly quantified. The latter can be asymptotically
guaranteed to converge to the global optimum, enabling the validity of the
down-stream statistical inference. Numerical result indicates the superiority
of the proposed method compared to the existing ones.
Related papers
- SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
entropy error function has been widely used in neural networks.
We propose a novel entropy function with smoothing l0 regularization for feed-forward neural networks.
Our work is novel as it enables neural networks to learn effectively, producing more accurate predictions.
arXiv Detail & Related papers (2024-05-28T19:54:26Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning [71.14237199051276]
We consider classical distribution-agnostic framework and algorithms minimising empirical risks.
We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks is extremely challenging.
arXiv Detail & Related papers (2023-09-13T16:33:27Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Generalized Uncertainty of Deep Neural Networks: Taxonomy and
Applications [1.9671123873378717]
We show that the uncertainty of deep neural networks is not only important in a sense of interpretability and transparency, but also crucial in further advancing their performance.
We will generalize the definition of the uncertainty of deep neural networks to any number or vector that is associated with an input or an input-label pair, and catalog existing methods on mining'' such uncertainty from a deep model.
arXiv Detail & Related papers (2023-02-02T22:02:33Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
Deep neural network often gets trapped into a local minimum in training.
New kernel-expanded neural network (K-StoNet) model reformulates the network as a latent variable model.
Model can be easily trained using the imputationregularized optimization (IRO) algorithm.
arXiv Detail & Related papers (2022-01-14T06:42:42Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.