One-Bit Matrix Completion with Differential Privacy
- URL: http://arxiv.org/abs/2110.00719v1
- Date: Sat, 2 Oct 2021 03:49:55 GMT
- Title: One-Bit Matrix Completion with Differential Privacy
- Authors: Zhengpin Li, Zheng Wei, Xiaojun Mao and Jian Wang
- Abstract summary: We propose a novel framework for one-bit matrix completion under the differential privacy constraint.
Our proposed approaches can maintain high-level privacy with little loss of completion accuracy.
- Score: 6.409622409155275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matrix completion is a prevailing collaborative filtering method for
recommendation systems that requires the data offered by users to provide
personalized service. However, due to insidious attacks and unexpected
inference, the release of user data often raises serious privacy concerns. Most
of the existing solutions focus on improving the privacy guarantee for general
matrix completion. As a special case, in recommendation systems where the
observations are binary, one-bit matrix completion covers a broad range of
real-life situations. In this paper, we propose a novel framework for one-bit
matrix completion under the differential privacy constraint. In this framework,
we develop several perturbation mechanisms and analyze the privacy-accuracy
trade-off offered by each mechanism. The experiments conducted on both
synthetic and real-world datasets demonstrate that our proposed approaches can
maintain high-level privacy with little loss of completion accuracy.
Related papers
- Private Optimal Inventory Policy Learning for Feature-based Newsvendor with Unknown Demand [13.594765018457904]
This paper introduces a novel approach to estimate a privacy-preserving optimal inventory policy within the f-differential privacy framework.
We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation.
Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost.
arXiv Detail & Related papers (2024-04-23T19:15:43Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
Amplification by subsampling is one of the main primitives in machine learning with differential privacy.
We propose the first general framework for deriving mechanism-specific guarantees.
We analyze how subsampling affects the privacy of groups of multiple users.
arXiv Detail & Related papers (2024-03-07T19:36:05Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
Noise reduction mechanisms produce increasingly accurate answers.
Analysts only pay the privacy cost of the least noisy or most accurate answer released.
There has yet to be any study on how ex-post private mechanisms compose.
We develop privacy filters that allow an analyst to adaptively switch between differentially private and ex-post private mechanisms.
arXiv Detail & Related papers (2023-06-24T00:33:34Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
We propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization.
As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information.
arXiv Detail & Related papers (2023-04-11T13:50:39Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Decentralized Matrix Factorization with Heterogeneous Differential
Privacy [2.4743508801114444]
We propose a novel Heterogeneous Differentially Private Matrix Factorization algorithm (denoted as HDPMF) for untrusted recommender.
Our framework uses modified stretching mechanism with an innovative rescaling scheme to achieve better trade off between privacy and accuracy.
arXiv Detail & Related papers (2022-12-01T06:48:18Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
We propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that runs in two phases.
splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps obtain a reasonable privacy budget.
We also extend our DP2-Pub mechanism to the scenario with a semi-honest server which satisfies local differential privacy.
arXiv Detail & Related papers (2022-08-24T17:52:43Z) - HyObscure: Hybrid Obscuring for Privacy-Preserving Data Publishing [7.554593344695387]
Minimizing privacy leakage while ensuring data utility is a critical problem to data holders in a privacy-preserving data publishing task.
Most prior research concerns only with one type of data and resorts to a single obscuring method.
This work takes a pilot study on privacy-preserving data publishing when both generalization and obfuscation operations are employed.
arXiv Detail & Related papers (2021-12-15T03:04:00Z) - Bounding, Concentrating, and Truncating: Unifying Privacy Loss
Composition for Data Analytics [2.614355818010333]
We provide strong privacy loss bounds when an analyst may select pure DP, bounded range (e.g. exponential mechanisms) or concentrated DP mechanisms in any order.
We also provide optimal privacy loss bounds that apply when an analyst can select pure DP and bounded range mechanisms in a batch.
arXiv Detail & Related papers (2020-04-15T17:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.