On states of quantum theory
- URL: http://arxiv.org/abs/2110.00793v4
- Date: Mon, 25 Jul 2022 15:53:09 GMT
- Title: On states of quantum theory
- Authors: Amir R. Arab
- Abstract summary: We study normal states, i.e. states which are represented by density operators, and singular states, i.e. states can not be represented by density operators.
It is given an approach to the resolution of bounded linear functionals into quantum states by applying the GNS construction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper the generalized quantum states, i.e. positive and normalized
linear functionals on $C^{*}$-algebras, are studied. Firstly, we study normal
states, i.e. states which are represented by density operators, and singular
states, i.e. states can not be represented by density operators. It is given an
approach to the resolution of bounded linear functionals into quantum states by
applying the GNS construction, i.e. the fundamental result of Gelfand, Neumark
and Segal on the representation theory of $C^{*}$-algebras, and theory of
projections. Secondly, it is given an application in quantum information
theory. We study covariant cloners, i.e. quantum channels in the Heisenberg and
the Schr\"{o}dinger pictures which are covariant by shifting, and it is shown
that the optimal cloners can not have a singular component. Finally, we discuss
on the representation of pure states in the sense of the Gelfand-Pettis
integral. We also give physical interpretations and examples in different
sections of the present work.
Related papers
- Symplectic and Lagrangian Polar Duality; Applications to Quantum
Information Geometry [0.0]
We study two symplectically covariant versions of polar duality.
The first variant makes use of the symplectic form on phase space and allows a precise study of the covariance matrix of a density operator.
The second variant is a symplectically covariant version of the usual polar duality highlighting the role played by Lagrangian planes.
arXiv Detail & Related papers (2023-09-14T15:07:39Z) - Discrete Quantum Gaussians and Central Limit Theorem [0.0]
We study states in discrete-variable (DV) quantum systems.
stabilizer states play a role in DV quantum systems similar to the role Gaussian states play in continuous-variable systems.
arXiv Detail & Related papers (2023-02-16T17:03:19Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Non-Gaussian Quantum States and Where to Find Them [0.0]
We show how non-Gaussian states can be created by performing measurements on a subset of modes in a Gaussian state.
We demonstrate that Wigner negativity is a requirement to violate Bell inequalities and to achieve a quantum computational advantage.
arXiv Detail & Related papers (2021-04-26T13:59:41Z) - Quantum Operations in an Information Theory for Fermions [0.0]
We introduce the physically allowed quantum operations, in congruence with the parity super-selection rule, that map the set of allowed fermionic states onto itself.
We explicitly show the equivalence between these three representations of fermionic quantum operations.
arXiv Detail & Related papers (2021-02-17T23:41:05Z) - Generalization of group-theoretic coherent states for variational
calculations [1.2599533416395767]
We introduce new families of pure quantum states that are constructed on top of the well-known Gilmore-Perelomov group-theoretic coherent states.
We generate entanglement not found in the coherent states themselves, while retaining many of their desirable properties.
arXiv Detail & Related papers (2020-12-22T16:50:25Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.