Artificial intelligence for Sustainable Energy: A Contextual Topic
Modeling and Content Analysis
- URL: http://arxiv.org/abs/2110.00828v1
- Date: Sat, 2 Oct 2021 15:51:51 GMT
- Title: Artificial intelligence for Sustainable Energy: A Contextual Topic
Modeling and Content Analysis
- Authors: Tahereh Saheb, Mohammad Dehghani
- Abstract summary: We offer a novel contextual topic modeling combining LDA, BERT, and Clustering.
We then combined these computational analyses with content analysis of related scientific publications to identify the main scholarly topics, sub-themes, and cross-topic themes within scientific research on sustainable AI in energy.
Our research identified eight dominant topics including sustainable buildings, AI-based DSSs for urban water management, climate artificial intelligence, Agriculture 4, the convergence of AI with IoT, and AI-based evaluation of renewable technologies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parallel to the rising debates over sustainable energy and artificial
intelligence solutions, the world is currently discussing the ethics of
artificial intelligence and its possible negative effects on society and the
environment. In these arguments, sustainable AI is proposed, which aims at
advancing the pathway toward sustainability, such as sustainable energy. In
this paper, we offered a novel contextual topic modeling combining LDA, BERT,
and Clustering. We then combined these computational analyses with content
analysis of related scientific publications to identify the main scholarly
topics, sub-themes, and cross-topic themes within scientific research on
sustainable AI in energy. Our research identified eight dominant topics
including sustainable buildings, AI-based DSSs for urban water management,
climate artificial intelligence, Agriculture 4, the convergence of AI with IoT,
AI-based evaluation of renewable technologies, smart campus and engineering
education, and AI-based optimization. We then recommended 14 potential future
research strands based on the observed theoretical gaps. Theoretically, this
analysis contributes to the existing literature on sustainable AI and
sustainable energy, and practically, it intends to act as a general guide for
energy engineers and scientists, AI scientists, and social scientists to widen
their knowledge of sustainability in AI and energy convergence research.
Related papers
- Present and Future of AI in Renewable Energy Domain : A Comprehensive Survey [0.0]
Artificial intelligence (AI) has become a crucial instrument for streamlining processes in various industries.
Nine AI-based strategies are identified here to assist Renewable Energy (RE) in contemporary power systems.
This study also addressed three main topics: using AI technology for renewable power generation, utilizing AI for renewable energy forecasting, and optimizing energy systems.
arXiv Detail & Related papers (2024-06-22T04:36:09Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
The paper provides a comprehensive exploration of the role of AI in sustainable vertical farming.
The review synthesizes the current state of AI applications, encompassing machine learning, computer vision, the Internet of Things (IoT), and robotics.
The implications extend beyond efficiency gains, considering economic viability, reduced environmental impact, and increased food security.
arXiv Detail & Related papers (2023-11-17T22:15:41Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation? [0.0]
This article briefly explains, classifies, and theorises AI technology.
It then politically contextualises that analysis in light of the sustainability discourse.
It argues that AI can play a small role in moving towards sustainable societies.
arXiv Detail & Related papers (2023-06-15T15:40:00Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
This paper describes the paradox of an energy-consuming technology serving the ecological challenges of tomorrow.
It draws on numerous examples from AI for Green players to present use cases and concrete examples.
The environmental dimension is part of the broader ethical problem of AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
arXiv Detail & Related papers (2022-12-22T14:31:48Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
We review major trends in machine learning approaches that can address the sustainability problem of AI.
We will highlight the major limitations of existing studies and propose potential research challenges and directions for the development of next generation of sustainable AI techniques.
arXiv Detail & Related papers (2022-05-08T09:38:35Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.