Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation?
- URL: http://arxiv.org/abs/2306.09204v2
- Date: Tue, 18 Jul 2023 10:51:25 GMT
- Title: Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation?
- Authors: Rainer Rehak
- Abstract summary: This article briefly explains, classifies, and theorises AI technology.
It then politically contextualises that analysis in light of the sustainability discourse.
It argues that AI can play a small role in moving towards sustainable societies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The discussion about the disruptive possibilities of a technology called
artificial intelligence (AI) is on everyone's lips. Companies and countries
alike are running multi-billion-dollar research programmes to ensure they do
not miss out on the global innovation hunt. Among many other applications, AI
is also supposed to aid the large-scale changes needed to achieve sustainable
societies. To assess those claims and possibilities, this article briefly
explains, classifies, and theorises AI technology and then politically
contextualises that analysis in light of the sustainability discourse. Based on
those insights it finally argues, that AI can play a small role in moving
towards sustainable societies, however the fixation on technological
innovation, especially AI, obscures and depoliticises the necessary societal
decisions regarding sustainability goals and means as mere technicalities and
therefore rather obstructs real and effective societal transformation efforts.
Related papers
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - The Global Impact of AI-Artificial Intelligence: Recent Advances and
Future Directions, A Review [0.0]
The article highlights the implications of AI, including its impact on economic, ethical, social, security & privacy, and job displacement aspects.
It discusses the ethical concerns surrounding AI development, including issues of bias, security, and privacy violations.
The article concludes by emphasizing the importance of public engagement and education to promote awareness and understanding of AI's impact on society at large.
arXiv Detail & Related papers (2023-12-22T00:41:21Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
The paper provides a comprehensive exploration of the role of AI in sustainable vertical farming.
The review synthesizes the current state of AI applications, encompassing machine learning, computer vision, the Internet of Things (IoT), and robotics.
The implications extend beyond efficiency gains, considering economic viability, reduced environmental impact, and increased food security.
arXiv Detail & Related papers (2023-11-17T22:15:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
There are many emerging AI risks for humanity, such as autonomous weapons, automation-spurred job loss, socio-economic inequality, bias caused by data and algorithms, privacy violations and deepfakes.
Social diversity, equity and inclusion are considered key success factors of AI to mitigate risks, create values and drive social justice.
In our journey towards an AI-enabled sustainable future, we need to address AI ethics and governance as a priority.
arXiv Detail & Related papers (2022-09-28T22:23:10Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
We review major trends in machine learning approaches that can address the sustainability problem of AI.
We will highlight the major limitations of existing studies and propose potential research challenges and directions for the development of next generation of sustainable AI techniques.
arXiv Detail & Related papers (2022-05-08T09:38:35Z) - Needs and Artificial Intelligence [0.0]
We reflect on the relationship between needs and AI, and call for the realisation of needs-aware AI systems.
We discuss some of the most critical gaps, barriers, enablers, and drivers of co-creating future AI-based socio-technical systems.
arXiv Detail & Related papers (2022-02-18T15:16:22Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.