Hierarchical Gaussian Process Models for Regression Discontinuity/Kink
under Sharp and Fuzzy Designs
- URL: http://arxiv.org/abs/2110.00921v1
- Date: Sun, 3 Oct 2021 04:23:56 GMT
- Title: Hierarchical Gaussian Process Models for Regression Discontinuity/Kink
under Sharp and Fuzzy Designs
- Authors: Ximing Wu
- Abstract summary: We propose nonparametric Bayesian estimators for causal inference exploiting Regression Discontinuity/Kink (RD/RK)
These estimators are extended to hierarchical GP models with an intermediate Bayesian neural network layer.
Monte Carlo simulations show that our estimators perform similarly and often better than competing estimators in terms of precision, coverage and interval length.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose nonparametric Bayesian estimators for causal inference exploiting
Regression Discontinuity/Kink (RD/RK) under sharp and fuzzy designs. Our
estimators are based on Gaussian Process (GP) regression and classification.
The GP methods are powerful probabilistic modeling approaches that are
advantageous in terms of derivative estimation and uncertainty qualification,
facilitating RK estimation and inference of RD/RK models. These estimators are
extended to hierarchical GP models with an intermediate Bayesian neural network
layer and can be characterized as hybrid deep learning models. Monte Carlo
simulations show that our estimators perform similarly and often better than
competing estimators in terms of precision, coverage and interval length. The
hierarchical GP models improve upon one-layer GP models substantially. An
empirical application of the proposed estimators is provided.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
We propose a Gapped Straight-Through ( GST) estimator to reduce the variance without incurring resampling overhead.
This estimator is inspired by the essential properties of Straight-Through Gumbel-Softmax.
Experiments demonstrate that the proposed GST estimator enjoys better performance compared to strong baselines on two discrete deep generative modeling tasks.
arXiv Detail & Related papers (2022-06-15T01:46:05Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
We derive a basis function approximation scheme for mixed-domain covariance functions.
We show that we can approximate the exact GP model accurately in a fraction of the runtime.
We also demonstrate a scalable model reduction workflow for obtaining smaller and more interpretable models.
arXiv Detail & Related papers (2021-11-03T04:47:37Z) - Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC [0.24275655667345403]
We model the log-likelihood function using a Gaussian process (GP)
The main methodological innovation is to apply this model to emulate the progression that an exact Metropolis-Hastings (MH) sampler would take.
The resulting approximate sampler is conceptually simple and sample-efficient.
arXiv Detail & Related papers (2021-04-08T17:38:02Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.