Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC
- URL: http://arxiv.org/abs/2104.03942v2
- Date: Thu, 31 Aug 2023 15:46:04 GMT
- Title: Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC
- Authors: Marko J\"arvenp\"a\"a, Jukka Corander
- Abstract summary: We model the log-likelihood function using a Gaussian process (GP)
The main methodological innovation is to apply this model to emulate the progression that an exact Metropolis-Hastings (MH) sampler would take.
The resulting approximate sampler is conceptually simple and sample-efficient.
- Score: 0.24275655667345403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework for approximate Bayesian inference when only a limited
number of noisy log-likelihood evaluations can be obtained due to computational
constraints, which is becoming increasingly common for applications of complex
models. We model the log-likelihood function using a Gaussian process (GP) and
the main methodological innovation is to apply this model to emulate the
progression that an exact Metropolis-Hastings (MH) sampler would take if it was
applicable. Informative log-likelihood evaluation locations are selected using
a sequential experimental design strategy until the MH accept/reject decision
is done accurately enough according to the GP model. The resulting approximate
sampler is conceptually simple and sample-efficient. It is also more robust to
violations of GP modelling assumptions compared with earlier, related "Bayesian
optimisation-like" methods tailored for Bayesian inference. We discuss some
theoretical aspects and various interpretations of the resulting approximate MH
sampler, and demonstrate its benefits in the context of Bayesian and
generalised Bayesian likelihood-free inference for simulator-based statistical
models.
Related papers
- Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
We propose a method for building adaptive cross-conformal prediction intervals.
The resulting conformal prediction intervals exhibit a level of adaptivity akin to Bayesian credibility sets.
The potential applicability of the method is demonstrated in the context of surrogate modeling of an expensive-to-evaluate simulator of the clogging phenomenon in steam generators of nuclear reactors.
arXiv Detail & Related papers (2024-01-15T14:45:18Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Fast post-process Bayesian inference with Variational Sparse Bayesian Quadrature [13.36200518068162]
We propose the framework of post-process Bayesian inference as a means to obtain a quick posterior approximation from existing target density evaluations.
Within this framework, we introduce Variational Sparse Bayesian Quadrature (VSBQ), a method for post-process approximate inference for models with black-box and potentially noisy likelihoods.
We validate our method on challenging synthetic scenarios and real-world applications from computational neuroscience.
arXiv Detail & Related papers (2023-03-09T13:58:35Z) - Towards Practical Preferential Bayesian Optimization with Skew Gaussian
Processes [8.198195852439946]
We study preferential Bayesian optimization (BO) where reliable feedback is limited to pairwise comparison called duels.
An important challenge in preferential BO, which uses the preferential Gaussian process (GP) model to represent flexible preference structure, is that the posterior distribution is a computationally intractable skew GP.
We develop a new method that achieves both high computational efficiency and low sample complexity, and then demonstrate its effectiveness through extensive numerical experiments.
arXiv Detail & Related papers (2023-02-03T03:02:38Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Robust Bayesian Inference for Simulator-based Models via the MMD
Posterior Bootstrap [13.448658162594604]
We propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators.
This leads to a highly-parallelisable Bayesian inference algorithm with strong properties.
The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
arXiv Detail & Related papers (2022-02-09T22:12:19Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.