論文の概要: Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2110.00926v1
- Date: Sun, 3 Oct 2021 05:38:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:05:58.807562
- Title: Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning
- Title(参考訳): 反復的半教師付き学習のための情報理論一般化境界
- Authors: Haiyun He, Hanshu Yan, Vincent Y. F. Tan
- Abstract要約: 特に,情報理論の原理を用いて,反復型SSLアルゴリズムのエミュレータ一般化誤差の振る舞いを理解することを目的とする。
我々の理論的結果は、クラス条件分散があまり大きくない場合、一般化誤差の上限は反復数とともに単調に減少するが、すぐに飽和することを示している。
- 参考スコア(独自算出の注目度): 81.1071978288003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider iterative semi-supervised learning (SSL) algorithms that
iteratively generate pseudo-labels for a large amount unlabelled data to
progressively refine the model parameters. In particular, we seek to understand
the behaviour of the {\em generalization error} of iterative SSL algorithms
using information-theoretic principles. To obtain bounds that are amenable to
numerical evaluation, we first work with a simple model -- namely, the binary
Gaussian mixture model. Our theoretical results suggest that when the class
conditional variances are not too large, the upper bound on the generalization
error decreases monotonically with the number of iterations, but quickly
saturates. The theoretical results on the simple model are corroborated by
extensive experiments on several benchmark datasets such as the MNIST and CIFAR
datasets in which we notice that the generalization error improves after
several pseudo-labelling iterations, but saturates afterwards.
- Abstract(参考訳): 我々は、モデルパラメータを段階的に洗練するために、大量の未ラベルデータに対して擬似ラベルを反復的に生成する反復半教師付き学習(SSL)アルゴリズムを検討する。
特に,情報理論の原理を用いて反復型SSLアルゴリズムの一般化誤差の振る舞いを理解することを目的とする。
数値的な評価に適する境界を得るためには、まず単純なモデル、すなわち二元ガウス混合モデルで作業する。
我々の理論的結果は、クラス条件分散があまり大きくない場合、一般化誤差の上限は反復数とともに単調に減少するが、すぐに飽和することを示している。
単純なモデルに関する理論的結果は、MNIST や CIFAR などのベンチマークデータセットの広範な実験によって裏付けられ、一般化誤差は擬似ラベリングを繰り返した後に改善されるが、その後飽和する。
関連論文リスト
- Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
逆問題では、スパーシティ事前の組み込みは、解に対する正則化効果をもたらす。
本稿では,ガウスの混合として事前に定式化された確率的疎性について提案する。
我々は、このネットワークのパラメータを推定するために、教師なしのトレーニング戦略と教師なしのトレーニング戦略をそれぞれ導入した。
論文 参考訳(メタデータ) (2024-01-29T22:52:57Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
半教師付き学習(SSL)のための最悪ケース整合正則化手法を提案する。
本稿では,ラベル付きトレーニングデータとラベル付きトレーニングデータとを別々に比較した経験的損失項からなるSSLの一般化について述べる。
この境界によって動機づけられたSSLの目的は、元のラベルのないサンプルと、その複数の拡張版との最大の矛盾を最小限に抑えるものである。
論文 参考訳(メタデータ) (2022-09-26T12:04:49Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Sharp global convergence guarantees for iterative nonconvex
optimization: A Gaussian process perspective [30.524043513721168]
回帰モデルのクラスに対する反復アルゴリズムの収束を解析するための一般的なレシピを開発する。
決定論的には、有限サンプル状態におけるアルゴリズムの収束率と最終的なエラーフロアの両方を正確にキャプチャする。
我々は、更新の交互化に基づく高次アルゴリズムと、下位次数に基づく一次アルゴリズムの両方に対して、鋭い収束率を示す。
論文 参考訳(メタデータ) (2021-09-20T21:48:19Z) - Detecting Label Noise via Leave-One-Out Cross Validation [0.0]
クリーンなサンプルと破損したサンプルの混合から実値のノイズラベルを同定し,修正するための簡単なアルゴリズムを提案する。
独立分散を伴う付加的なガウス雑音項をそれぞれと観測されたラベルに関連付けるヘテロ代用ノイズモデルを用いる。
提案手法は, 合成および実世界の科学データを用いた学習において, 劣化したサンプルを特定でき, より良い回帰モデルが得られることを示す。
論文 参考訳(メタデータ) (2021-03-21T10:02:50Z) - The Predictive Normalized Maximum Likelihood for Over-parameterized
Linear Regression with Norm Constraint: Regret and Double Descent [12.929639356256928]
現代の機械学習モデルは、予測規則の複雑さとその一般化能力の間のトレードオフに従わないことを示す。
最近提案された予測正規化最大値 (pNML) は、個々のデータに対するmin-max後悔解である。
我々は,pNML後悔を合成データ上でのポイントワイド学習可能性尺度として使用し,二重発生現象の予測に成功していることを示す。
論文 参考訳(メタデータ) (2021-02-14T15:49:04Z) - Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition [34.235007566913396]
ラベルに関連付けられた用語への分散の解釈可能で対称的な分解について述べる。
バイアスはネットワーク幅とともに単調に減少するが、分散項は非単調な振る舞いを示す。
我々はまた、著しく豊かな現象論も分析する。
論文 参考訳(メタデータ) (2020-11-04T21:04:02Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。