論文の概要: Scheduling Optimization Techniques for Neural Network Training
- arxiv url: http://arxiv.org/abs/2110.00929v1
- Date: Sun, 3 Oct 2021 05:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 07:12:49.843167
- Title: Scheduling Optimization Techniques for Neural Network Training
- Title(参考訳): ニューラルネットワークトレーニングのためのスケジューリング最適化手法
- Authors: Hyungjun Oh, Hyungjun Oh, HyeongJu Kim, Jiwon Seo
- Abstract要約: 本稿では,ニューラルネットワークトレーニングに有効なスケジューリング手法であるアウト・オブ・オーダー(oo)バックプロップを提案する。
単一GPU、データ並列、パイプライン並列トレーニングにおけるGPU利用は、ooobackpropを適用することで、一般的に改善できることを示す。
- 参考スコア(独自算出の注目度): 3.1617796705744547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network training requires a large amount of computation and thus GPUs
are often used for the acceleration. While they improve the performance, GPUs
are underutilized during the training.This paper proposes out-of-order (ooo)
backprop, an effective scheduling technique for neural network training. By
exploiting the dependencies of gradient computations, ooo backprop enables to
reorder their executions to make the most of the GPU resources. We show that
the GPU utilization in single-GPU, data-parallel, and pipeline-parallel
training can be commonly improve by applying ooo back-prop and prioritizing
critical operations. We propose three scheduling algorithms based on ooo
backprop. For single-GPU training, we schedule with multi-stream out-of-order
computation to mask the kernel launch overhead. In data-parallel training, we
reorder the gradient computations to maximize the overlapping of computation
and parameter communication; in pipeline-parallel training, we prioritize
critical gradient computations to reduce the pipeline stalls.We evaluate our
optimizations with twelve neural networks including a light-weight computer
vision model (MobileNet) and largeNLP models (BERT and GPT-3) with up to forty
eight V100 GPUs.Our scheduling algorithms effectively improve the performance
of single-GPU training as well as data- and pipeline-parallel training.Compared
to the respective state of the art training systems, the throughput is
substantially improved for single-GPU, data-parallel, and pipeline-parallel
training.
- Abstract(参考訳): ニューラルネットワークのトレーニングには大量の計算が必要であるため、アクセラレーションにはGPUがよく使用される。
本稿では,ニューラルネットワークトレーニングの効果的なスケジューリング手法であるアウト・オブ・オーダー(ooo)バックプロップを提案する。
勾配計算の依存関係を活用することで、ooo backpropは実行をリオーダーしてGPUリソースを最大限活用することができる。
単一GPU、データ並列、パイプライン並列トレーニングにおけるGPU利用は、oooバックプロップを適用して重要な操作を優先順位付けすることにより、一般的に改善可能であることを示す。
我々は,ooobackpropに基づく3つのスケジューリングアルゴリズムを提案する。
シングルGPUトレーニングでは、カーネルの起動オーバーヘッドを隠すために、マルチストリームのアウトオブオーダ計算をスケジュールします。
In data-parallel training, we reorder the gradient computations to maximize the overlapping of computation and parameter communication; in pipeline-parallel training, we prioritize critical gradient computations to reduce the pipeline stalls.We evaluate our optimizations with twelve neural networks including a light-weight computer vision model (MobileNet) and largeNLP models (BERT and GPT-3) with up to forty eight V100 GPUs.Our scheduling algorithms effectively improve the performance of single-GPU training as well as data- and pipeline-parallel training.Compared to the respective state of the art training systems, the throughput is substantially improved for single-GPU, data-parallel, and pipeline-parallel training.
関連論文リスト
- Faster Multi-GPU Training with PPLL: A Pipeline Parallelism Framework Leveraging Local Learning [8.628231789161577]
本稿では,ローカル学習アルゴリズムを活用する新しいフレームワークPPLL(Pipeline Parallelism based on Local Learning)を提案する。
GPU間のデータ転送を管理するキューを利用することで、PPLLはシームレスなクロスGPU通信を保証する。
その結果,PPLLは従来のパイプライン並列処理と同等あるいはそれ以上の訓練速度を達成しつつ,局所的な学習手法の学習速度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-11-19T08:09:18Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
品質を犠牲にすることなく、より小さなネットワークを使用できる汎用的な新しい入力符号化を提案する。
小さなニューラルネットワークは、勾配降下によって値が最適化された訓練可能な特徴ベクトルの多分解能ハッシュテーブルによって拡張される。
数桁の高速化を実現し、高品質なニューラルネットワークプリミティブを数秒でトレーニングすることができる。
論文 参考訳(メタデータ) (2022-01-16T07:22:47Z) - Accelerating GAN training using highly parallel hardware on public cloud [0.3694429692322631]
本研究は,GAN(Geneversarative Adversarial Network)を並列環境でトレーニングする,さまざまなタイプのクラウドサービスについて検討する。
複数のGPUとGoogle Processing Units(TPU)上でのトレーニングプロセスを並列化する。
トレーニングプロセスの線形スピードアップは、物理結果の観点から、ほとんどの性能を保ちながら得られる。
論文 参考訳(メタデータ) (2021-11-08T16:59:15Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
グラフニューラルネットワーク(GNN)のミニバッチトレーニングには、多くの計算とデータ移動が必要である。
我々は,分散マルチGPU環境において,近傍サンプリングを用いたミニバッチトレーニングを行うことを支持する。
本稿では,これらのボトルネックを緩和する一連の改良点について述べる。
また,サンプリングによる推論を支援する実験分析を行い,試験精度が実質的に損なわれていないことを示す。
論文 参考訳(メタデータ) (2021-10-16T02:41:35Z) - Large Batch Simulation for Deep Reinforcement Learning [101.01408262583378]
我々は,視覚複雑な3次元環境における深層強化学習に基づく学習を,事前作業よりも2桁高速化する。
単一のGPUマシンで1秒間に19,000フレーム以上の経験と最大72,000フレーム/秒のエンドツーエンドのトレーニング速度を実現します。
バッチシミュレーションと性能最適化を組み合わせることで、1つのGPU上の複雑な3D環境において、従来の最先端システムでトレーニングされたエージェントの精度の97%から97%まで、ポイントナビゲーションエージェントをトレーニングできることを実証する。
論文 参考訳(メタデータ) (2021-03-12T00:22:50Z) - Computational Performance Predictions for Deep Neural Network Training:
A Runtime-Based Approach [1.5857983167543392]
本稿では,ユーザが情報と費用効率のよいGPU選択を行うための,新しい実践手法を提案する。
我々は、(i)ウェーブスケーリング、または(ii)GPUの実行モデルに基づく技術、または(ii)事前訓練されたマルチレイヤーパーセプトロンを用いて、トレーニングイテレーション中の各操作の実行時間を1つのGPUから別のGPUにスケーリングすることで予測を行う。
この手法をSurferというPythonライブラリに実装し、ResNet-50、Inception v3、Transformer、GNMT、DCGANで正確なイテレーション実行時間予測を行う。
論文 参考訳(メタデータ) (2021-01-31T20:17:46Z) - Accurate, Efficient and Scalable Training of Graph Neural Networks [9.569918335816963]
グラフニューラルネットワーク(GNN)は、グラフ上にノード埋め込みを生成する強力なディープラーニングモデルである。
効率的でスケーラブルな方法でトレーニングを実行することは依然として困難です。
本稿では,最先端のミニバッチ手法と比較して,トレーニング負荷を桁違いに削減する新しい並列トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-05T22:06:23Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
グラフ畳み込みネットワーク(GCN)は、グラフ上での表現学習のための最先端のディープラーニングモデルとして登場した。
実質的かつ不規則なデータ通信のため、GCNの訓練を加速することは困難である。
我々はCPU-FPGAヘテロジニアスシステム上でGCNをトレーニングするための新しいアクセラレータを設計する。
論文 参考訳(メタデータ) (2019-12-31T21:19:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。