論文の概要: Deep Fraud Detection on Non-attributed Graph
- arxiv url: http://arxiv.org/abs/2110.01171v1
- Date: Mon, 4 Oct 2021 03:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 23:08:30.464987
- Title: Deep Fraud Detection on Non-attributed Graph
- Title(参考訳): 非帰属グラフによる深い不正検出
- Authors: Chen Wang, Yingtong Dou, Min Chen, Jia Chen, Zhiwei Liu, Philip S. Yu
- Abstract要約: グラフニューラルネットワーク(GNN)は不正検出に強い性能を示している。
ラベル付きデータは大規模な産業問題、特に不正検出には不十分である。
よりラベルのないデータを活用するための新しいグラフ事前学習戦略を提案する。
- 参考スコア(独自算出の注目度): 61.636677596161235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fraud detection problems are usually formulated as a machine learning problem
on a graph. Recently, Graph Neural Networks (GNNs) have shown solid performance
on fraud detection. The successes of most previous methods heavily rely on rich
node features and high-fidelity labels. However, labeled data is scarce in
large-scale industrial problems, especially for fraud detection where new
patterns emerge from time to time. Meanwhile, node features are also limited
due to privacy and other constraints. In this paper, two improvements are
proposed: 1) We design a graph transformation method capturing the structural
information to facilitate GNNs on non-attributed fraud graphs. 2) We propose a
novel graph pre-training strategy to leverage more unlabeled data via
contrastive learning. Experiments on a large-scale industrial dataset
demonstrate the effectiveness of the proposed framework for fraud detection.
- Abstract(参考訳): 不正検出問題は通常、グラフ上の機械学習問題として定式化される。
近年,グラフニューラルネットワーク(GNN)の不正検出性能が向上している。
以前のほとんどの方法の成功は、リッチノード機能と高忠実度ラベルに大きく依存している。
しかし、ラベル付きデータは大規模な産業問題、特に新しいパターンが時々出現する不正検出には不十分である。
一方、ノード機能はプライバシーやその他の制約のために制限されている。
本稿では,二つの改良点を提案する。
1)非分散不正グラフ上のGNNを容易にするための構造情報を取得するグラフ変換法を設計する。
2) コントラスト学習によるラベルなしデータを活用するための新しいグラフ事前学習戦略を提案する。
大規模産業データセットにおける実験により,提案手法の有効性が実証された。
関連論文リスト
- Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
教師なしグラフ異常検出は、ラベルを使わずにグラフの多数から逸脱する稀なパターンを特定することを目的としている。
近年,グラフニューラルネットワーク(GNN)を用いて効率的なノード表現を学習している。
教師なしグラフ異常検出(G3AD)のためのグラフニューラルネットワークのガードフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-25T07:09:05Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - EDoG: Adversarial Edge Detection For Graph Neural Networks [17.969573886307906]
グラフニューラルネットワーク(GNN)は、バイオインフォマティクス、薬物設計、ソーシャルネットワークといった様々なタスクに広く応用されている。
近年の研究では、GNNは、微妙な摂動を加えることでノードやサブグラフの分類予測を誤認することを目的とした敵攻撃に弱いことが示されている。
本稿では,グラフ生成に基づく攻撃戦略の知識を必要とせず,汎用対向エッジ検出パイプラインEDoGを提案する。
論文 参考訳(メタデータ) (2022-12-27T20:42:36Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
性能劣化は主にトポロジと属性の矛盾に起因すると我々は主張する。
注意機構を用いて2つの視点を適応的に融合する簡易かつ効果的な手法を提案する。
我々のモデルは、実世界の不正検出データセットで最先端のベースラインを大幅に上回ることができる。
論文 参考訳(メタデータ) (2022-10-22T08:21:49Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。