Generalized Kernel Thinning
- URL: http://arxiv.org/abs/2110.01593v6
- Date: Thu, 1 Aug 2024 01:49:47 GMT
- Title: Generalized Kernel Thinning
- Authors: Raaz Dwivedi, Lester Mackey,
- Abstract summary: kernel thinning algorithm of Dwivedi and Mackey (2021)
We show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel.
We prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels.
- Score: 27.44719786963725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a probability distribution more effectively than independent sampling by targeting a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel, any distribution, and any fixed function in the RKHS. Second, we show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, target KT admits maximum mean discrepancy (MMD) guarantees comparable to or better than those of square-root KT without making explicit use of a square-root kernel. Third, we prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Mat\'ern, that do not have square-roots. Fourth, we establish that KT applied to a sum of the target and power kernels (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of target KT. In our experiments with target KT and KT+, we witness significant improvements in integration error even in $100$ dimensions and when compressing challenging differential equation posteriors.
Related papers
- Supervised Kernel Thinning [6.6157730528755065]
kernel thinning algorithm of Dwivedi & Mackey (2024) provides a better-than-i.i.d. compression of a generic set of points.
We generalize the KT algorithm to speed up supervised learning problems involving kernel methods.
arXiv Detail & Related papers (2024-10-17T16:48:51Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - KSD Aggregated Goodness-of-fit Test [38.45086141837479]
We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels.
We provide non-asymptotic guarantees on the power of KSDAgg.
We find that KSDAgg outperforms other state-of-the-art adaptive KSD-based goodness-of-fit testing procedures.
arXiv Detail & Related papers (2022-02-02T00:33:09Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
We propose to meta-learn a kernel from offline data (Meta-KeL)
Under mild conditions, we guarantee that our estimated RKHS yields valid confidence sets.
We also empirically evaluate the effectiveness of our approach on a Bayesian optimization task.
arXiv Detail & Related papers (2022-02-01T17:46:51Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - The Fast Kernel Transform [21.001203328543006]
We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications for datasets in moderate dimensions with quasilinear complexity.
The FKT is easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Green's functions.
We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
arXiv Detail & Related papers (2021-06-08T16:15:47Z) - Isolation Distributional Kernel: A New Tool for Point & Group Anomaly
Detection [76.1522587605852]
Isolation Distributional Kernel (IDK) is a new way to measure the similarity between two distributions.
We demonstrate IDK's efficacy and efficiency as a new tool for kernel based anomaly detection for both point and group anomalies.
arXiv Detail & Related papers (2020-09-24T12:25:43Z) - Fourier Sparse Leverage Scores and Approximate Kernel Learning [29.104055676527913]
We prove new explicit upper bounds on the leverage scores of Fourier functions under both the Gaussian and Laplace measures.
Our bounds are motivated by two important applications in machine learning.
arXiv Detail & Related papers (2020-06-12T17:25:39Z) - SimpleMKKM: Simple Multiple Kernel K-means [49.500663154085586]
We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM)
Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix.
We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error.
arXiv Detail & Related papers (2020-05-11T10:06:40Z) - Kernel-Based Reinforcement Learning: A Finite-Time Analysis [53.47210316424326]
We introduce Kernel-UCBVI, a model-based optimistic algorithm that leverages the smoothness of the MDP and a non-parametric kernel estimator of the rewards.
We empirically validate our approach in continuous MDPs with sparse rewards.
arXiv Detail & Related papers (2020-04-12T12:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.