Supervised Kernel Thinning
- URL: http://arxiv.org/abs/2410.13749v1
- Date: Thu, 17 Oct 2024 16:48:51 GMT
- Title: Supervised Kernel Thinning
- Authors: Albert Gong, Kyuseong Choi, Raaz Dwivedi,
- Abstract summary: kernel thinning algorithm of Dwivedi & Mackey (2024) provides a better-than-i.i.d. compression of a generic set of points.
We generalize the KT algorithm to speed up supervised learning problems involving kernel methods.
- Score: 6.6157730528755065
- License:
- Abstract: The kernel thinning algorithm of Dwivedi & Mackey (2024) provides a better-than-i.i.d. compression of a generic set of points. By generating high-fidelity coresets of size significantly smaller than the input points, KT is known to speed up unsupervised tasks like Monte Carlo integration, uncertainty quantification, and non-parametric hypothesis testing, with minimal loss in statistical accuracy. In this work, we generalize the KT algorithm to speed up supervised learning problems involving kernel methods. Specifically, we combine two classical algorithms--Nadaraya-Watson (NW) regression or kernel smoothing, and kernel ridge regression (KRR)--with KT to provide a quadratic speed-up in both training and inference times. We show how distribution compression with KT in each setting reduces to constructing an appropriate kernel, and introduce the Kernel-Thinned NW and Kernel-Thinned KRR estimators. We prove that KT-based regression estimators enjoy significantly superior computational efficiency over the full-data estimators and improved statistical efficiency over i.i.d. subsampling of the training data. En route, we also provide a novel multiplicative error guarantee for compressing with KT. We validate our design choices with both simulations and real data experiments.
Related papers
- A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples.
We show that our SSN method achieves a global convergence rate of $O (1/sqrtk)$, and a local quadratic convergence rate under standard regularity conditions.
arXiv Detail & Related papers (2023-10-21T18:48:45Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - KSD Aggregated Goodness-of-fit Test [38.45086141837479]
We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels.
We provide non-asymptotic guarantees on the power of KSDAgg.
We find that KSDAgg outperforms other state-of-the-art adaptive KSD-based goodness-of-fit testing procedures.
arXiv Detail & Related papers (2022-02-02T00:33:09Z) - Generalized Kernel Thinning [27.44719786963725]
kernel thinning algorithm of Dwivedi and Mackey (2021)
We show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel.
We prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels.
arXiv Detail & Related papers (2021-10-04T17:41:53Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - Scaling Neural Tangent Kernels via Sketching and Random Features [53.57615759435126]
Recent works report that NTK regression can outperform finitely-wide neural networks trained on small-scale datasets.
We design a near input-sparsity time approximation algorithm for NTK, by sketching the expansions of arc-cosine kernels.
We show that a linear regressor trained on our CNTK features matches the accuracy of exact CNTK on CIFAR-10 dataset while achieving 150x speedup.
arXiv Detail & Related papers (2021-06-15T04:44:52Z) - The Fast Kernel Transform [21.001203328543006]
We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications for datasets in moderate dimensions with quasilinear complexity.
The FKT is easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Green's functions.
We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
arXiv Detail & Related papers (2021-06-08T16:15:47Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - A New Algorithm for Tessellated Kernel Learning [4.264192013842097]
An ideal set of kernels should: admit a linear parameterization (for tractability); be dense in the set of all kernels (for robustness); be universal (for accuracy)
The recently proposed Tesselated Kernels (TKs) is currently the only known class which meets all three criteria.
By contrast, the 2-step algorithm proposed here scales to 10,000 data points and extends to the regression problem.
arXiv Detail & Related papers (2020-06-13T18:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.