Learning to Solve the AC Optimal Power Flow via a Lagrangian Approach
- URL: http://arxiv.org/abs/2110.01653v1
- Date: Mon, 4 Oct 2021 18:29:08 GMT
- Title: Learning to Solve the AC Optimal Power Flow via a Lagrangian Approach
- Authors: Ling Zhang, Baosen Zhang
- Abstract summary: We use a Lagrangian-based approach to ACOPF problems.
We show that our approach is able to obtain the globally optimal cost even when the training solutions are suboptimal.
- Score: 9.561589138108811
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Using deep neural networks to predict the solutions of AC optimal power flow
(ACOPF) problems has been an active direction of research. However, because the
ACOPF is nonconvex, it is difficult to construct a good data set that contains
mostly globally optimal solutions. To overcome the challenge that the training
data may contain suboptimal solutions, we propose a Lagrangian-based approach.
First, we use a neural network to learn the dual variables of the ACOPF
problem. Then we use a second neural network to predict solutions of the
partial Lagrangian from the predicted dual variables. Since the partial
Lagrangian has a much better optimization landscape, we use the predicted
solutions from the neural network as a warm start for the ACOPF problem. Using
standard and modified IEEE 22-bus, 39-bus, and 118-bus networks, we show that
our approach is able to obtain the globally optimal cost even when the training
data is mostly comprised of suboptimal solutions.
Related papers
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - Beyond the Neural Fog: Interpretable Learning for AC Optimal Power Flow [0.0]
AC optimal power flow (AC-OPF) problem is essential for power system operations.
In this paper, we introduce a novel neural-based approach that merges simplicity and interpretability.
arXiv Detail & Related papers (2024-07-30T14:38:43Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Learning the Efficient Frontier [0.01874930567916036]
We introduce NeuralEF: a fast neural approximation framework that robustly forecasts the result of the efficient frontier (EF) convex optimization problem.
We show that NeuralEF is a viable solution to accelerate large-scale simulation while handling discontinuous behavior.
arXiv Detail & Related papers (2023-09-27T16:49:37Z) - Proximal Policy Optimization with Graph Neural Networks for Optimal Power Flow [4.27638925658716]
Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on data.
Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems.
We propose an architecture that learns how to solve the problem and that is at the same time able to unseen scenarios.
arXiv Detail & Related papers (2022-12-23T17:00:00Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC optimal power flow is a fundamental optimization problem in power system analysis.
Deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline.
This paper proposes an end-to-end unsupervised learning based framework for AC-OPF.
arXiv Detail & Related papers (2022-12-07T22:26:45Z) - Deep Learning Methods for Joint Optimization of Beamforming and
Fronthaul Quantization in Cloud Radio Access Networks [12.838832724944615]
Cooperative beamforming across points (APs) and fronthaulization strategies are essential for cloud radio network (C-RAN) systems.
Non-dimensional quantity problem is stemmed from per-AP power and fronthaul capacity constraints.
We investigate a deep learning optimization module is where well-trained deep neural network (DNN)
Numerical results validate the advantages of the proposed learning solution.
arXiv Detail & Related papers (2021-07-06T10:27:43Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.