Beyond the Neural Fog: Interpretable Learning for AC Optimal Power Flow
- URL: http://arxiv.org/abs/2408.05228v1
- Date: Tue, 30 Jul 2024 14:38:43 GMT
- Title: Beyond the Neural Fog: Interpretable Learning for AC Optimal Power Flow
- Authors: Salvador Pineda, Juan PĂ©rez-Ruiz, Juan Miguel Morales,
- Abstract summary: AC optimal power flow (AC-OPF) problem is essential for power system operations.
In this paper, we introduce a novel neural-based approach that merges simplicity and interpretability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The AC optimal power flow (AC-OPF) problem is essential for power system operations, but its non-convex nature makes it challenging to solve. A widely used simplification is the linearized DC optimal power flow (DC-OPF) problem, which can be solved to global optimality, but whose optimal solution is always infeasible in the original AC-OPF problem. Recently, neural networks (NN) have been introduced for solving the AC-OPF problem at significantly faster computation times. However, these methods necessitate extensive datasets, are difficult to train, and are often viewed as black boxes, leading to resistance from operators who prefer more transparent and interpretable solutions. In this paper, we introduce a novel learning-based approach that merges simplicity and interpretability, providing a bridge between traditional approximation methods and black-box learning techniques. Our approach not only provides transparency for operators but also achieves competitive accuracy. Numerical results across various power networks demonstrate that our method provides accuracy comparable to, and often surpassing, that of neural networks, particularly when training datasets are limited.
Related papers
- Physics-Informed GNN for non-linear constrained optimization: PINCO a solver for the AC-optimal power flow [0.0]
This work explores a physics-informed graph neural network, PINCO, to solve the AC-OPF.
PINCO generalizes effectively across a diverse set of loading conditions in the power system.
It can function both as a solver and as a hybrid universal function approximator.
arXiv Detail & Related papers (2024-10-07T08:08:36Z) - Learning Optimal Power Flow Value Functions with Input-Convex Neural
Networks [15.791200937436837]
The Optimal Power Flow (OPF) problem is integral to power systems, aiming to optimize generation while adhering to dispatch constraints.
This research explores machine learning (ML) to learn for faster analysis in the online setting while still allowing for coupling into other convex dependent decision problems.
arXiv Detail & Related papers (2023-10-06T21:48:39Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
The Gaussian Process (GP) based Chance-Constrained Optimal Flow (CC-OPF) is an open-source Python code for economic dispatch (ED) problem in power grids.
The developed tool presents a novel data-driven approach based on the CC-OP model for solving the large regression problem with a trade-off between complexity and accuracy.
arXiv Detail & Related papers (2023-02-16T17:59:06Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC optimal power flow is a fundamental optimization problem in power system analysis.
Deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline.
This paper proposes an end-to-end unsupervised learning based framework for AC-OPF.
arXiv Detail & Related papers (2022-12-07T22:26:45Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - Physics-Informed Neural Networks for AC Optimal Power Flow [0.0]
This paper introduces, for the first time, physics-informed neural networks to accurately estimate the AC-OPF result.
We show how physics-informed neural networks achieve higher accuracy and lower constraint violations than standard neural networks.
arXiv Detail & Related papers (2021-10-06T11:44:59Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Learning to Solve AC Optimal Power Flow by Differentiating through
Holomorphic Embeddings [17.338923885534193]
Alternating current optimal power flow (AC-OPF) is one of the fundamental problems in power systems operation.
In this paper, we show efficient strategies that circumvent this problem by differentiating through the operations of a power flow solver.
We report a 12x increase in speed and a 40% increase in robustness compared to a traditional solver.
arXiv Detail & Related papers (2020-12-16T18:23:51Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPF is a key building block in many power system applications.
Motivated by increased penetration of renewable sources, this paper explores deep learning to deliver efficient approximations to the AC-OPF.
arXiv Detail & Related papers (2020-06-29T20:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.