論文の概要: Attaining Interpretability in Reinforcement Learning via Hierarchical
Primitive Composition
- arxiv url: http://arxiv.org/abs/2110.01833v1
- Date: Tue, 5 Oct 2021 05:59:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-06 14:23:09.401867
- Title: Attaining Interpretability in Reinforcement Learning via Hierarchical
Primitive Composition
- Title(参考訳): 階層的原始構成による強化学習における解釈可能性の実現
- Authors: Jeong-Hoon Lee and Jongeun Choi
- Abstract要約: 本稿では,従来の課題を階層構造に分解して軽減する階層型強化学習アルゴリズムを提案する。
提案手法は,6自由度マニピュレータを用いてピック・アンド・プレイス・タスクを解くことで,実際にどのように適用できるかを示す。
- 参考スコア(独自算出の注目度): 3.1078562713129765
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep reinforcement learning has shown its effectiveness in various
applications and provides a promising direction for solving tasks with high
complexity. In most reinforcement learning algorithms, however, two major
issues need to be dealt with - the sample inefficiency and the interpretability
of a policy. The former happens when the environment is sparsely rewarded
and/or has a long-term credit assignment problem, while the latter becomes a
problem when the learned policies are deployed at the customer side product. In
this paper, we propose a novel hierarchical reinforcement learning algorithm
that mitigates the aforementioned issues by decomposing the original task in a
hierarchy and by compounding pretrained primitives with intents. We show how
the proposed scheme can be employed in practice by solving a pick and place
task with a 6 DoF manipulator.
- Abstract(参考訳): 深層強化学習は、様々な応用においてその効果を示し、高い複雑さでタスクを解くための有望な方向を提供する。
しかし、ほとんどの強化学習アルゴリズムでは、サンプルの非効率性とポリシーの解釈可能性という2つの大きな問題を扱う必要がある。
前者は環境が緩やかに報奨されたり、長期のクレジット割り当ての問題が発生したり、後者は学習したポリシーが顧客側製品にデプロイされたときに問題となる。
本稿では,従来の課題を階層に分解し,事前学習したプリミティブを意図と組み合わせることで,上記の問題を緩和する新しい階層型強化学習アルゴリズムを提案する。
6自由度マニピュレータによるピック・アンド・プレイス・タスクの解法により,提案手法を実際に活用する方法を示す。
関連論文リスト
- On the benefits of pixel-based hierarchical policies for task generalization [7.207480346660617]
強化学習実践者は、特に画像に基づく観察空間において、階層的な政策を避けることが多い。
画素からのマルチタスクロボット制御実験により階層構造の利点を解析する。
論文 参考訳(メタデータ) (2024-07-27T01:26:26Z) - Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition [11.998708550268978]
本稿では,タスクをよりシンプルなマルチエージェントサブタスクに分解する手法を提案する。
各サブタスクでは、チーム全体のサブセットが、サブタスク固有のポリシを取得するようにトレーニングされる。
サブチームはマージされ、ターゲットタスクに転送される。そこでは、そのポリシーは、より複雑なターゲットタスクを解決するために、まとめて微調整される。
論文 参考訳(メタデータ) (2023-02-09T21:24:56Z) - Lexicographic Multi-Objective Reinforcement Learning [65.90380946224869]
このような問題を解決するために,アクション値アルゴリズムとポリシー勾配アルゴリズムの両方のファミリを提案する。
エージェントの動作に安全制約を課すのに我々のアルゴリズムをどのように使用できるかを示し、この文脈でのそれらの性能を他の制約付き強化学習アルゴリズムと比較する。
論文 参考訳(メタデータ) (2022-12-28T10:22:36Z) - Multi-Task Off-Policy Learning from Bandit Feedback [54.96011624223482]
本稿では,階層型非政治最適化アルゴリズム (HierOPO) を提案する。
学習方針の準最適性にタスクごとのバウンダリを証明し、階層モデルを使用しないよりも明確な改善を示す。
我々の理論的および実証的な結果は、各タスクを個別に解くよりも、階層を使うことの明確な利点を示している。
論文 参考訳(メタデータ) (2022-12-09T08:26:27Z) - Option-Aware Adversarial Inverse Reinforcement Learning for Robotic
Control [44.77500987121531]
階層的模倣学習 (Hierarchical Imitation Learning, HIL) は, 長期作業における複雑度の高い動作を, 専門家による実証から再現するために提案されている。
逆逆強化学習に基づく新しいHILアルゴリズムを開発した。
また,目的をエンド・ツー・エンドで学習するための変分オートエンコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-05T00:28:26Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Constructing a Good Behavior Basis for Transfer using Generalized Policy
Updates [63.58053355357644]
そこで我々は,優れた政策集合を学習する問題を考察し,組み合わせることで,目に見えない多種多様な強化学習タスクを解くことができることを示した。
理論的には、独立したポリシーのセットと呼ぶ、特定の多様なポリシーのセットにアクセスできることによって、ハイレベルなパフォーマンスを即時に達成できることが示される。
論文 参考訳(メタデータ) (2021-12-30T12:20:46Z) - Coverage as a Principle for Discovering Transferable Behavior in
Reinforcement Learning [16.12658895065585]
私たちは、表現だけでは挑戦的な領域での効率的な転送には不十分であり、行動を通じて知識を伝達する方法を探ります。
事前訓練された政策の行動は、手作業(探索)の問題解決や、問題(探索)の解決に有用なデータ収集に利用することができる。
論文 参考訳(メタデータ) (2021-02-24T16:51:02Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z) - Auxiliary Learning by Implicit Differentiation [54.92146615836611]
補助的なタスクによるニューラルネットワークのトレーニングは、関心のあるメインタスクのパフォーマンスを改善するための一般的なプラクティスである。
そこで我々は,暗黙の識別に基づく両課題を対象とした新しいフレームワークAuxiLearnを提案する。
まず、有用な補助関数が知られている場合、全ての損失を1つのコヒーレントな目的関数に組み合わせたネットワークの学習を提案する。
第二に、有用な補助タスクが知られていない場合、意味のある新しい補助タスクを生成するネットワークの学習方法について述べる。
論文 参考訳(メタデータ) (2020-06-22T19:35:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。