HF, DF, TF: Approximating potential curves, calculating rovibrational
states
- URL: http://arxiv.org/abs/2110.01991v2
- Date: Wed, 27 Oct 2021 18:27:37 GMT
- Title: HF, DF, TF: Approximating potential curves, calculating rovibrational
states
- Authors: Laura E. Angeles Gantes and Horacio Olivares-Pil\'on
- Abstract summary: An analytical representation for the potential energy curve for the ground state $X1Sigma+$ of the hydrogen fluoride molecule (HF) is presented.
The rovibrational spectra of the diatomic molecule HF is calculated by solving the Schr"odinger equation for nuclear motion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An analytical representation for the potential energy curve for the ground
state $X^1\Sigma^+$ of the hydrogen fluoride molecule (HF) is presented in the
frame of the Born-Oppenheimer approximation. The analytical expression for the
potential energy curve is based in a two point Pad\'e approximant which
correctly reproduces the asymptotic behaviors at small $R\rightarrow 0$ and
large $R\rightarrow\infty$ internuclear distances, obtaining not less than 4-5
s.d. when compared with experimental results. The rovibrational spectra of the
diatomic molecule HF is calculated by solving the Schr\"odinger equation for
nuclear motion. The ground state $X^1\Sigma^+$ contains 21 vibrational states
($\nu,0$) and 722 rovibrational states ($\nu,L$). A slight modification in the
differential equation for nuclear motion allows us to obtain the rovibrational
spectrum of the ground state of the deuterium fluoride (DF) and tritium
fluoride (TF) molecules. Full spectra is presented for this two isotopologues
species of HF.
Related papers
- Analytical Correlation in the H$_{2}$ Molecule from the Independent Atom Ansatz [49.1574468325115]
The total energy functional correctly dissociates the H-H bond and yields absolute errors of 0.002 $rA$, 0.19 eV, and 13 cm-1$ relative to experiment at the tight binding computational cost.
The chemical bond formation is attributed to the Heitler-London resonance of quasi-orthogonal atomic states with no contributions from kinetic energy or charge accumulation in the bond.
arXiv Detail & Related papers (2024-05-20T21:21:42Z) - Towards the "puzzle" of Chromium dimer Cr$_2$: predicting the Born-Oppenheimer rovibrational spectrum [44.99833362998488]
This paper calculates the potential energy curve for the state $X1Sigma+$ of the Cr$$$ dimer.
It is found for the first time for the whole range of internuclear distances $R$.
arXiv Detail & Related papers (2024-01-06T17:00:12Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Universal energy-dependent pseudopotential for the two-body problem of
confined ultracold atoms [4.514953268743484]
Two-body scattering amplitude and energy spectrum of confined ultracold atoms are of fundamental importance for studies of ultracold atom physics.
For many systems, one can efficiently calculate these quantities via the zero-range Huang-Yang pseudopotential (HYP)
We show a method based on the quantum defect theory, with which $hat a_rm eff$ can be analytically derived for systems with van der Waals inter-atomic interaction.
arXiv Detail & Related papers (2021-08-02T16:34:04Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - On the four-body problem in the Born-Oppenheimer approximation [0.0]
The model allows exact solvability and a critical analysis of the Born-Oppenheimer approximation.
It is shown that the sum of the first two terms of the Puiseux series, in powers of the dimensionless parameter $sigma=fracmM$, coincide exactly with the values obtained in the Born-Oppenheimer approximation.
arXiv Detail & Related papers (2020-07-29T16:43:03Z) - Ab initio properties of the NaLi molecule in the $a^3\Sigma^+$
electronic state [0.0]
We calculate the electronic and rovibrational structure of ultracold polar and magnetic molecules with spectroscopic accuracy.
We show that quantum chemistry methods are capable of predicting scattering properties of manyelectron systems.
arXiv Detail & Related papers (2020-03-26T17:39:46Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.