Interactively Generating Explanations for Transformer Language Models
- URL: http://arxiv.org/abs/2110.02058v3
- Date: Thu, 7 Oct 2021 08:00:10 GMT
- Title: Interactively Generating Explanations for Transformer Language Models
- Authors: Patrick Schramowski, Felix Friedrich, Christopher Tauchmann, and
Kristian Kersting
- Abstract summary: Transformer language models are state-of-the-art in a multitude of NLP tasks.
Recent methods aim to provide interpretability and explainability to black-box models.
We emphasize using prototype networks directly incorporated into the model architecture.
- Score: 14.306470205426526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer language models are state-of-the-art in a multitude of NLP tasks.
Despite these successes, their opaqueness remains problematic. Recent methods
aiming to provide interpretability and explainability to black-box models
primarily focus on post-hoc explanations of (sometimes spurious) input-output
correlations. Instead, we emphasize using prototype networks directly
incorporated into the model architecture and hence explain the reasoning
process behind the network's decisions. Moreover, while our architecture
performs on par with several language models, it enables one to learn from user
interactions. This not only offers a better understanding of language models
but uses human capabilities to incorporate knowledge outside of the rigid range
of purely data-driven approaches.
Related papers
- IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
We introduce the Inner-Adaptor Architecture for multimodal large language models (MLLMs)
The architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers.
Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets.
arXiv Detail & Related papers (2024-08-23T08:10:13Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Diffusion Language Models Can Perform Many Tasks with Scaling and
Instruction-Finetuning [56.03057119008865]
We show that scaling diffusion language models can effectively make them strong language learners.
We build competent diffusion language models at scale by first acquiring knowledge from massive data.
Experiments show that scaling diffusion language models consistently improves performance across downstream language tasks.
arXiv Detail & Related papers (2023-08-23T16:01:12Z) - Fine-Tune Language Models as Multi-Modal Differential Equation Solvers [14.181842691371935]
We present a transformation of in-context operator learning into a multi-modal paradigm.
In particular, we take inspiration from the recent success of large language models, and propose using "captions" to integrate human knowledge about the operator.
arXiv Detail & Related papers (2023-08-09T16:44:25Z) - Black-box language model explanation by context length probing [7.526153863886609]
We present context length probing, a novel explanation technique for causal language models.
The technique is model-agnostic and does not rely on access to model internals beyond computing token-level probabilities.
We apply context length probing to large pre-trained language models and offer some initial analyses and insights.
arXiv Detail & Related papers (2022-12-30T16:24:10Z) - Pre-Training a Graph Recurrent Network for Language Representation [34.4554387894105]
We consider a graph recurrent network for language model pre-training, which builds a graph structure for each sequence with local token-level communications.
We find that our model can generate more diverse outputs with less contextualized feature redundancy than existing attention-based models.
arXiv Detail & Related papers (2022-09-08T14:12:15Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
We propose to use language models as a general-purpose interface to various foundation models.
A collection of pretrained encoders perceive diverse modalities (such as vision, and language)
We propose a semi-causal language modeling objective to jointly pretrain the interface and the modular encoders.
arXiv Detail & Related papers (2022-06-13T17:34:22Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics.
Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding.
We show that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena.
arXiv Detail & Related papers (2022-02-21T18:32:24Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
We develop a neural network based abstractive multi-document summarization (MDS) model.
We process the dependency information into the linguistic-guided attention mechanism.
With the help of linguistic signals, sentence-level relations can be correctly captured.
arXiv Detail & Related papers (2021-09-23T08:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.