IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities
- URL: http://arxiv.org/abs/2408.12902v1
- Date: Fri, 23 Aug 2024 08:10:13 GMT
- Title: IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities
- Authors: Bin Wang, Chunyu Xie, Dawei Leng, Yuhui Yin,
- Abstract summary: We introduce the Inner-Adaptor Architecture for multimodal large language models (MLLMs)
The architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers.
Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets.
- Score: 4.269326314400742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of multimodal large language models (MLLMs), common methods typically involve unfreezing the language model during training to foster profound visual understanding. However, the fine-tuning of such models with vision-language data often leads to a diminution of their natural language processing (NLP) capabilities. To avoid this performance degradation, a straightforward solution is to freeze the language model while developing multimodal competencies. Unfortunately, previous works have not attained satisfactory outcomes. Building on the strategy of freezing the language model, we conduct thorough structural exploration and introduce the Inner-Adaptor Architecture (IAA). Specifically, the architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers, thereby enabling the frozen language model to acquire multimodal capabilities. Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets. We conduct extensive experiments to improve the general multimodal capabilities and visual grounding abilities of the MLLM. Our approach remarkably outperforms previous state-of-the-art methods across various vision-language benchmarks without sacrificing performance on NLP tasks. Code and models are available at https://github.com/360CVGroup/Inner-Adaptor-Architecture.
Related papers
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - From Unimodal to Multimodal: Scaling up Projectors to Align Modalities [16.733970553781887]
We propose a novel approach that aligns vision and language modalities using only projection layers on pretrained, frozen unimodal encoders.
Our method exploits the high semantic similarity between embedding spaces of well-trained vision and language models.
It involves selecting semantically similar encoders in the latent space, curating a concept-rich dataset of image-caption pairs, and training simple projectors.
arXiv Detail & Related papers (2024-09-28T17:57:32Z) - Understanding the role of FFNs in driving multilingual behaviour in LLMs [0.0]
In this paper, we conduct an in-depth analysis of the multilingual capabilities of a family of Large Language Models.
We introduce novel metrics to probe the model's multilingual behaviour at different layers and shed light on the impact of architectural choices on multilingual processing.
arXiv Detail & Related papers (2024-04-22T03:47:00Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffin framework employs pre-trained vision-language models to act as providers of visual signals.
UniMM-Chat dataset explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions.
arXiv Detail & Related papers (2023-10-01T12:35:18Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved instruction-following capabilities.
Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model.
To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models.
arXiv Detail & Related papers (2023-09-14T15:34:01Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
We propose to use language models as a general-purpose interface to various foundation models.
A collection of pretrained encoders perceive diverse modalities (such as vision, and language)
We propose a semi-causal language modeling objective to jointly pretrain the interface and the modular encoders.
arXiv Detail & Related papers (2022-06-13T17:34:22Z) - On the Universality of Deep COntextual Language Models [15.218264849664715]
Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing.
Multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer.
Due to this initial success, pre-trained models are being used as Universal Language Models'
arXiv Detail & Related papers (2021-09-15T08:00:33Z) - Interactively Generating Explanations for Transformer Language Models [14.306470205426526]
Transformer language models are state-of-the-art in a multitude of NLP tasks.
Recent methods aim to provide interpretability and explainability to black-box models.
We emphasize using prototype networks directly incorporated into the model architecture.
arXiv Detail & Related papers (2021-09-02T11:34:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.