論文の概要: Transformer Assisted Convolutional Network for Cell Instance
Segmentation
- arxiv url: http://arxiv.org/abs/2110.02270v1
- Date: Tue, 5 Oct 2021 18:18:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 13:07:30.780349
- Title: Transformer Assisted Convolutional Network for Cell Instance
Segmentation
- Title(参考訳): セルインスタンスセグメンテーションのためのトランスフォーマー支援畳み込みネットワーク
- Authors: Deepanshu Pandey, Pradyumna Gupta, Sumit Bhattacharya, Aman Sinha,
Rohit Agarwal
- Abstract要約: 本稿では,従来の畳み込み特徴抽出器の性能向上のためのトランスフォーマーに基づく手法を提案する。
提案手法は, 変圧器の自己アテンションに類似した投影操作を適用することにより, 変圧器を用いたトークン埋め込みと畳み込み特徴写像を融合する。
- 参考スコア(独自算出の注目度): 5.195101477698897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Region proposal based methods like R-CNN and Faster R-CNN models have proven
to be extremely successful in object detection and segmentation tasks.
Recently, Transformers have also gained popularity in the domain of Computer
Vision, and are being utilised to improve the performance of conventional
models. In this paper, we present a relatively new transformer based approach
to enhance the performance of the conventional convolutional feature extractor
in the existing region proposal based methods. Our approach merges the
convolutional feature maps with transformer-based token embeddings by applying
a projection operation similar to self-attention in transformers. The results
of our experiments show that transformer assisted feature extractor achieves a
significant improvement in mIoU (mean Intersection over Union) scores compared
to vanilla convolutional backbone.
- Abstract(参考訳): R-CNNやFaster R-CNNのような領域提案に基づく手法は、オブジェクトの検出やセグメンテーションタスクにおいて極めて成功している。
近年、トランスフォーマーはコンピュータビジョンの分野でも人気を集めており、従来のモデルの性能向上に利用されている。
本稿では,従来の畳み込み特徴抽出器の性能を向上させるための,比較的新しいトランスベース手法を提案する。
本手法は,トランスフォーマーの自己着脱に類似した投影操作を適用することで,畳み込み特徴マップとトランスフォーマーベースのトークン埋め込みを融合する。
以上の結果から, トランスフォーマーを用いた特徴抽出器は, バニラ・コンボリューションバックボーンに比べてmIoUスコアが有意に向上することが示された。
関連論文リスト
- Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
テーブル構造認識変換器のための自己教師付き事前学習(SSP)手法を提案する。
線形射影変換器とハイブリッドCNN変換器のパフォーマンスギャップは、TSRモデルにおける視覚エンコーダのSSPにより緩和できる。
論文 参考訳(メタデータ) (2024-02-23T19:34:06Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - SSformer: A Lightweight Transformer for Semantic Segmentation [7.787950060560868]
Swin Transformerは階層アーキテクチャとシフトウィンドウを使用して、様々な視覚タスクで新しい記録を樹立した。
我々はSSformerと呼ばれる軽量で効果的なトランスモデルを設計する。
実験の結果,提案したSSformerは最先端モデルと同等のmIoU性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-08-03T12:57:00Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - nnFormer: Interleaved Transformer for Volumetric Segmentation [50.10441845967601]
本稿では,自己意図と畳み込みを実証的に組み合わせた,インターリーブアーキテクチャを備えた強力なセグメンテーションモデルであるnnFormerを紹介する。
nnFormerは、SynapseとACDCの2つの一般的なデータセットで、以前のTransformerベースのメソッドよりも大幅に改善されている。
論文 参考訳(メタデータ) (2021-09-07T17:08:24Z) - Visual Saliency Transformer [127.33678448761599]
RGBとRGB-Dの液状物体検出(SOD)のための、純粋な変圧器であるVST(Visual Saliency Transformer)に基づく新しい統一モデルを開発しました。
イメージパッチを入力として取り、トランスフォーマーを利用してイメージパッチ間のグローバルコンテキストを伝搬する。
実験結果から,RGBとRGB-D SODのベンチマークデータセットにおいて,本モデルが既存の最新結果を上回っていることが示された。
論文 参考訳(メタデータ) (2021-04-25T08:24:06Z) - Toward Transformer-Based Object Detection [12.704056181392415]
ビジョントランスフォーマーは、共通の検出タスクヘッドによってバックボーンとして使用することができ、競合するCOCO結果を生成する。
vit-frcnnは、大きな事前訓練能力と高速微調整性能を含むトランスフォーマーに関連するいくつかの既知の特性を示す。
ViT-FRCNNは、オブジェクト検出などの複雑な視覚タスクの純粋なトランスフォーマーソリューションへの重要なステップストーンであると考えています。
論文 参考訳(メタデータ) (2020-12-17T22:33:14Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
この変換器は、様々な単語レベルのNLPタスクにおいて、繰り返しニューラルネットワークに基づくシーケンス・ツー・シーケンスモデルより優れていることが示されている。
十分なバッチサイズで、トランスフォーマーは文字レベルタスクの繰り返しモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-05-20T17:25:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。