論文の概要: Adversarial defenses via a mixture of generators
- arxiv url: http://arxiv.org/abs/2110.02364v1
- Date: Tue, 5 Oct 2021 21:27:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 09:19:16.472210
- Title: Adversarial defenses via a mixture of generators
- Title(参考訳): 発電機の混合による対向防御
- Authors: Maciej \.Zelaszczyk and Jacek Ma\'ndziuk
- Abstract要約: 敵対的な例は、深層学習システムの比較的弱い特徴として残っています。
本研究では,複数の敵攻撃を同時に行うことで,このようなシステムを監督せずに訓練することが可能であることを示す。
本システムでは,MNISTデータセットのアタックやデータラベルを使用せずに,未確認例のクラス情報を復元することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In spite of the enormous success of neural networks, adversarial examples
remain a relatively weakly understood feature of deep learning systems. There
is a considerable effort in both building more powerful adversarial attacks and
designing methods to counter the effects of adversarial examples. We propose a
method to transform the adversarial input data through a mixture of generators
in order to recover the correct class obfuscated by the adversarial attack. A
canonical set of images is used to generate adversarial examples through
potentially multiple attacks. Such transformed images are processed by a set of
generators, which are trained adversarially as a whole to compete in inverting
the initial transformations. To our knowledge, this is the first use of a
mixture-based adversarially trained system as a defense mechanism. We show that
it is possible to train such a system without supervision, simultaneously on
multiple adversarial attacks. Our system is able to recover class information
for previously-unseen examples with neither attack nor data labels on the MNIST
dataset. The results demonstrate that this multi-attack approach is competitive
with adversarial defenses tested in single-attack settings.
- Abstract(参考訳): ニューラルネットワークの巨大な成功にもかかわらず、敵対的な例は、ディープラーニングシステムの比較的弱い理解の特徴である。
より強力な敵攻撃の構築と、敵の例の効果に対抗するための設計方法の両方に多大な努力が払われている。
そこで本稿では, 敵攻撃による不正なクラスを回復するために, 逆入力データを発電機の混合により変換する手法を提案する。
画像の正準集合は、潜在的に複数の攻撃によって敵の例を生成するために使用される。
このような変換された画像は、初期変換を反転させるために逆向きに訓練されたジェネレータによって処理される。
我々の知る限りでは、これは防衛機構として混合ベースの敵対的訓練を受けたシステムの最初の使用である。
複数の敵の攻撃を同時に行うことで、監視なしでシステムを訓練することが可能であることを示す。
本システムでは,MNISTデータセットのアタックやデータラベルを使用せずに,未確認例のクラス情報を復元することができる。
その結果、このマルチアタックアプローチは、単一アタック設定でテストされた敵防御と競合することを示した。
関連論文リスト
- GenFighter: A Generative and Evolutive Textual Attack Removal [6.044610337297754]
自然言語処理(NLP)におけるTransformerモデルのような、ディープニューラルネットワーク(DNN)に対するアドリラルアタックは大きな課題となる。
本稿では,訓練分類分布の学習と推論によって敵の堅牢性を高める新しい防衛戦略であるGenFighterを紹介する。
我々は、GenFighterが攻撃および攻撃成功率の指標の下で、最先端の防御能力より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-17T16:32:13Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Generalizable Black-Box Adversarial Attack with Meta Learning [54.196613395045595]
ブラックボックス攻撃では、ターゲットモデルのパラメータが不明であり、攻撃者はクエリのフィードバックに基づいて、クエリの予算に基づいて摂動を成功させることを目指している。
本稿では,実例レベルの逆転可能性という,過去の攻撃に対するフィードバック情報を活用することを提案する。
この2種類の逆転送性を持つフレームワークは,市販のクエリベースのアタック手法と自然に組み合わせて性能を向上させることができる。
論文 参考訳(メタデータ) (2023-01-01T07:24:12Z) - Game Theoretic Mixed Experts for Combinational Adversarial Machine
Learning [10.368343314144553]
我々は、敵の攻撃と防御をアンサンブルするためのゲーム理論の枠組みを提供する。
本稿では, ランダム化変換, マルチモデル投票方式, 対向検出器アーキテクチャによる防御を目標とする3つの新しい攻撃アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:35:01Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
これにより、システムの学習アルゴリズムを騙すような、衝突する入力セットを作れます。
ホワイトボックス環境では、これらの攻撃は非常に成功しており、ターゲットモデルの予測が偶然よりも悪化する可能性があることを示す。
攻撃による「過度な対応」と、攻撃が生成されたモデルと攻撃が転送されたモデルとのミスマッチという2つの仮説を探索する。
論文 参考訳(メタデータ) (2022-11-23T14:55:44Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
ディープラーニングモデルは、実際の画像に準知覚可能なノイズを加えることによって合成される敵の例に非常に敏感である。
対象ネットワークのパラメータをアクセスしたり変更したりする必要のない,ポータブルな防御手法であるオンライン代替ジェネレータを提案する。
提案手法は,入力画像のスクラッチから別の画像をオンライン合成することで,対向雑音を除去・破壊する代わりに機能する。
論文 参考訳(メタデータ) (2020-09-17T07:11:16Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) は、敵の例の製作をモデル化するフレームワークである。
AEGは、ある仮説クラスからジェネレータとアバーサを反対に訓練することで、敵の例を設計する新しい方法を提供する。
MNIST と CIFAR-10 データセットに対する AEG の有効性を示す。
論文 参考訳(メタデータ) (2020-07-01T19:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。