論文の概要: Knothe-Rosenblatt transport for Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2110.02716v1
- Date: Wed, 6 Oct 2021 13:04:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 23:37:14.251168
- Title: Knothe-Rosenblatt transport for Unsupervised Domain Adaptation
- Title(参考訳): 教師なしドメイン適応のためのKnothe-Rosenblattトランスポート
- Authors: Aladin Virmaux, Illyyne Saffar, Jianfeng Zhang, Bal\'azs K\'egl
- Abstract要約: 教師なしドメイン適応(UDA)は、対象ドメインの共通タスクに取り組むために、関連するが異なるデータソースを活用することを目的としている。
我々はKnothe-Rosenblattトランスポートに基づくKnothe-Rosenblatt Domain Adaptation (KRDA)を提案する。
我々は,KRDAが,合成UDA問題と実世界のUDA問題の両方において最先端の性能を有することを示す。
- 参考スコア(独自算出の注目度): 8.945289838882857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) aims at exploiting related but different
data sources to tackle a common task in a target domain. UDA remains a central
yet challenging problem in machine learning. In this paper, we present an
approach tailored to moderate-dimensional tabular problems which are hugely
important in industrial applications and less well-served by the plethora of
methods designed for image and language data. Knothe-Rosenblatt Domain
Adaptation (KRDA) is based on the Knothe-Rosenblatt transport: we exploit
autoregressive density estimation algorithms to accurately model the different
sources by an autoregressive model using a mixture of Gaussians. KRDA then
takes advantage of the triangularity of the autoregressive models to build an
explicit mapping of the source samples into the target domain. We show that the
transfer map built by KRDA preserves each component quantiles of the
observations, hence aligning the representations of the different data sets in
the same target domain. Finally, we show that KRDA has state-of-the-art
performance on both synthetic and real world UDA problems.
- Abstract(参考訳): unsupervised domain adaptation(uda)は、関連するが異なるデータソースを利用して、ターゲットドメイン内の共通のタスクに取り組むことを目的としている。
UDAは依然として、機械学習における中心的かつ挑戦的な問題である。
本稿では, 産業応用において非常に重要であり, 画像データや言語データのための手法が多用されていない, 中間次元の表層問題に適した手法を提案する。
ノッチ・ロセンブラット領域適応 (krda) は、ノッチ・ロセンブラット輸送に基づいている: 自己回帰密度推定アルゴリズムを利用して、ガウスの混合物を用いた自己回帰モデルにより、異なるソースを正確にモデル化する。
次にkrdaは、自己回帰モデルの三角性を利用して、ソースサンプルのターゲットドメインへの明示的なマッピングを構築する。
KRDAによって構築された転送マップは、観測された各成分量を保存するので、異なるデータセットの表現を同じターゲット領域に整列させる。
最後に、KRDAは、合成および実世界のUDA問題の両方において最先端の性能を有することを示す。
関連論文リスト
- Gradually Vanishing Gap in Prototypical Network for Unsupervised Domain Adaptation [32.58201185195226]
プロトタイプネットワーク(GVG-PN)におけるGradually Vanishing Gapという効率的なUDAフレームワークを提案する。
我々のモデルは,グローバルとローカルの両方の観点からの伝達学習を実現する。
いくつかのUDAベンチマークの実験では、提案されたGVG-PNがSOTAモデルより明らかに優れていることが検証された。
論文 参考訳(メタデータ) (2024-05-28T03:03:32Z) - CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D
Object Detection [14.063365469339812]
LiDARベースの3Dオブジェクト検出法は、ソース(またはトレーニング)データ配布の外部のターゲットドメインにうまく一般化しないことが多い。
画像のモダリティから視覚的セマンティックキューを活用する,CMDA (unsupervised domain adaptation) と呼ばれる新しい手法を提案する。
また、自己学習に基づく学習戦略を導入し、モデルが逆向きに訓練され、ドメイン不変の機能を生成する。
論文 参考訳(メタデータ) (2024-03-06T14:12:38Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
ディープラーニングモデルを特定の対象個人に適用することは、難しい表情認識タスクである。
本稿では、FERにおける主観的ドメイン適応のための新しいMSDA手法を提案する。
複数の情報源からの情報を効率的に利用して、ディープFERモデルを単一のターゲット個人に適応させる。
論文 参考訳(メタデータ) (2023-12-09T18:40:37Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
半教師付きドメイン適応(SSDA)は、ソースドメインデータとラベル付きターゲットサンプルを効果的に活用することにより、学習者を新しいドメインに適応させる。
提案手法は,SSDAデータセットの有効性と汎用性の観点から,SOTA法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-30T16:48:28Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
改良されたアプローチは、深層学習の進歩で大きな成功をもたらしたが、それらは大量の地底深度アノテーションに依存している。
教師なしドメイン適応(UDA)は、教師付き学習の制約を緩和するため、ラベル付きソースデータからラベルなしターゲットデータに知識を転送する。
本稿では,その特徴空間をコンテンツやスタイルコンポーネントに分解することを学ぶための,学習特徴分解 for Adaptation (LFDA) と呼ばれる新しいMDEのためのUDA手法を提案する。
論文 参考訳(メタデータ) (2022-07-30T08:05:35Z) - Back to the Source: Diffusion-Driven Test-Time Adaptation [77.4229736436935]
テスト時間適応はテスト入力を利用し、シフトしたターゲットデータ上でテストした場合、ソースデータに基づいてトレーニングされたモデルの精度を向上させる。
代わりに、生成拡散モデルを用いて、すべてのテスト入力をソース領域に向けて投影することで、ターゲットデータを更新する。
論文 参考訳(メタデータ) (2022-07-07T17:14:10Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Towards Robust Cross-domain Image Understanding with Unsupervised Noise
Removal [18.21213151403402]
ソース領域がノイズである場合に、クロスドメイン画像理解のための現代ドメイン適応手法が不十分であることが判明した。
Weakly Supervised Domain Adaptation (WSDA) のための新しいノイズ耐性ドメイン適応法を提案する。
新型コロナウイルスおよび電子商取引データセットの一般画像と医用画像の両面において,本手法の有効性を評価するため,広範な実験を行った。
論文 参考訳(メタデータ) (2021-09-09T14:06:59Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
マルチモーダル心臓画像分割のための新しいUDA法を提案する。
提案手法は、逆学習に基づいて、異なる空間におけるソースとターゲットドメイン間のネットワーク特徴を適応する。
本手法はannotated source domainからunannotated target domainへの適応により2つの心データセットで検証した。
論文 参考訳(メタデータ) (2021-03-15T08:59:44Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。