Average scattering entropy for periodic, aperiodic and random
distribution of vertices in simple quantum graphs
- URL: http://arxiv.org/abs/2110.02840v2
- Date: Mon, 28 Feb 2022 15:42:22 GMT
- Title: Average scattering entropy for periodic, aperiodic and random
distribution of vertices in simple quantum graphs
- Authors: Alison A. Silva and Fabiano M. Andrade and D. Bazeia
- Abstract summary: This work deals with the average scattering entropy of quantum graphs.
It can be seen as another tool to be used to explore geometric and topological effects of current interest for quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work deals with the average scattering entropy of quantum graphs. We
explore this concept in several distinct scenarios that involve periodic,
aperiodic and random distribution of vertices of distinct degrees. In
particular, we compare distinct situations to see how they behave as we change
the arrangements of vertices and the topology and geometry of the proposed
structures. The results show that the average scattering entropy may depend on
the number of vertices, and on the topological and geometrical disposition of
vertices and edges of the quantum graph. In this sense, it can be seen as
another tool to be used to explore geometric and topological effects of current
interest for quantum systems.
Related papers
- Quantum geometry embedded in unitarity of evolution: revealing its impacts as quantum oscillation and dephasing in spin resonance and crystal bands [0.29127054707887967]
We show how geometry emerges in quantum as an intrinsic consequence of unitary evolution.
We exemplify geometric observables, such as oscillation, dephasing, in spin and band scenarios.
arXiv Detail & Related papers (2024-06-22T13:16:51Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Entanglement entropy of higher rank topological phases [0.0]
We study entanglement entropy of unusual $mathbbZ_N$ topological stabilizer codes which admit fractional excitations with restricted mobility constraint.
It is widely known that the sub-leading term of the entanglement entropy of a disk geometry in conventional topologically ordered phases is related to the total number of the quantum dimension of the fractional excitations.
arXiv Detail & Related papers (2023-02-22T16:06:01Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Scattering entropies of quantum graphs with several channels [0.0]
We deal with the scattering entropy of quantum graphs in many different circumstances.
We think the results may be used as quantifiers in models related to the transport in quantum graphs.
arXiv Detail & Related papers (2022-11-17T17:35:06Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
We introduce a general, unified model for geometric scattering on measure spaces.
We consider finite measure spaces that are obtained from randomly sampling an unknown manifold.
We propose two methods for constructing a data-driven graph on which the associated graph scattering transform approximates the scattering transform on the underlying manifold.
arXiv Detail & Related papers (2022-08-17T22:40:09Z) - q-Paths: Generalizing the Geometric Annealing Path using Power Means [51.73925445218366]
We introduce $q$-paths, a family of paths which includes the geometric and arithmetic mixtures as special cases.
We show that small deviations away from the geometric path yield empirical gains for Bayesian inference.
arXiv Detail & Related papers (2021-07-01T21:09:06Z) - Average scattering entropy of quantum graphs [0.0]
We propose a methodology that associates a graph a scattering entropy, which we call the average scattering entropy.
It is defined by taking into account the period of the scattering amplitude which we calculate using the Green's function procedure.
arXiv Detail & Related papers (2021-01-13T18:22:51Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks.
We introduce windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets.
We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts.
arXiv Detail & Related papers (2019-11-14T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.