Entanglement entropy of higher rank topological phases
- URL: http://arxiv.org/abs/2302.11468v2
- Date: Sun, 29 Oct 2023 07:30:23 GMT
- Title: Entanglement entropy of higher rank topological phases
- Authors: Hiromi Ebisu
- Abstract summary: We study entanglement entropy of unusual $mathbbZ_N$ topological stabilizer codes which admit fractional excitations with restricted mobility constraint.
It is widely known that the sub-leading term of the entanglement entropy of a disk geometry in conventional topologically ordered phases is related to the total number of the quantum dimension of the fractional excitations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study entanglement entropy of unusual $\mathbb{Z}_N$ topological
stabilizer codes which admit fractional excitations with restricted mobility
constraint in a manner akin to fracton topological phases. It is widely known
that the sub-leading term of the entanglement entropy of a disk geometry in
conventional topologically ordered phases is related to the total number of the
quantum dimension of the fractional excitations. We show that, in our model,
such a relation does not hold, i.e, the total number of the quantum dimension
varies depending on the system size, whereas the sub-leading term of the
entanglement entropy takes a constant number irrespective to the system size.
We give a physical interpretation of this result in the simplest case of the
model. More thorough analysis on the entanglement entropy of the model on
generic lattices is also presented.
Related papers
- Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Probing topological entanglement on large scales [0.0]
Topologically ordered quantum matter exhibits intriguing long-range patterns of entanglement, which reveal themselves in subsystem entropies.
We propose a protocol based on local adiabatic deformations of the Hamiltonian which extracts the universal features of long-range entanglement.
arXiv Detail & Related papers (2024-08-22T18:00:01Z) - Entanglement Fractalization [9.254741613227333]
We numerically explore the interplay of fractal geometry and quantum entanglement by analyzing entanglement entropy and the entanglement contour in the scaling limit.
For gapless ground states exhibiting a finite density of states at the chemical potential, we reveal a super-area law.
A novel self-similar and universal pattern termed an entanglement fractal'' in the entanglement contour data as we approach the scaling limit bears resemblance to intricate Chinese paper-cutting designs.
arXiv Detail & Related papers (2023-11-02T12:50:27Z) - Entanglement Entropy in Ground States of Long-Range Fermionic Systems [0.0]
We study the scaling of ground state entanglement entropy of various free fermionic models on one dimensional lattices.
We ask if there exists a common $alpha_c$ across different systems governing the transition to area law scaling found in local systems.
arXiv Detail & Related papers (2023-02-13T23:08:01Z) - Squashed entanglement in one-dimensional quantum matter [0.0]
We show that edge squashed entanglement discriminates unambiguously between topological insulators and topological superconductors.
Such topological squashed entanglement is robust under variations of the sample conditions due to disorder or local perturbations.
We show that topological squashed entanglement defines the natural measure of nonlocal correlation patterns in quantum matter.
arXiv Detail & Related papers (2022-07-27T21:40:53Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Topologically inequivalent quantizations [0.0]
We find that the usual thermodynamic limit is not necessary in order to have the inequivalent representations needed for the existence of physically disjoint phases of the system.
This is a new type of inequivalence, due to the nontrivial topological structure of the phase space, that appears at finite volume.
arXiv Detail & Related papers (2020-12-17T20:50:11Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.