Digital quantum simulation of strong correlation effects with iterative
quantum phase estimation over the variational quantum eigensolver algorithm:
$\mathrm{H_4}$ on a circle as a case study
- URL: http://arxiv.org/abs/2110.02864v2
- Date: Wed, 10 Nov 2021 12:32:17 GMT
- Title: Digital quantum simulation of strong correlation effects with iterative
quantum phase estimation over the variational quantum eigensolver algorithm:
$\mathrm{H_4}$ on a circle as a case study
- Authors: Dipanjali Halder, Srinivasa Prasannaa V., Valay Agarawal, Rahul Maitra
- Abstract summary: We generate the initial state by using the classical-quantum hybrid variational quantum eigensolver algorithm with unitary coupled cluster ansatz.
We demonstrate that a carefully and appropriately prepared initial state can greatly reduce the effects of noise due to sampling in the estimation of the desired eigenphase.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The iterative quantum phase estimation algorithm, applied to calculating the
ground state energies of quantum chemical systems, is theoretically appealing
in its wide scope of being able to handle both weakly and strongly correlated
regimes. However, the goodness of the initial state that is sent as an input to
the algorithm could strongly decide the quality of the results obtained. In
this work, we generate the initial state by using the classical-quantum hybrid
variational quantum eigensolver algorithm with unitary coupled cluster ansatz.
We apply the procedure to obtain the ground state energies of the H4 molecule
on a circle, as the system exhibits an interplay of dynamic as well as static
correlation effects at different geometries. Furthermore, we argue on the
importance of static correlation in construction of the reference determinant,
and propose a minimally parametrized unitary coupled cluster ansatz, which
drastically reduces number of variational parameters while incorporating the
static correlation effects in the wavefunction. We demonstrate that a carefully
and appropriately prepared initial state can greatly reduce the effects of
noise due to sampling in the estimation of the desired eigenphase.
Related papers
- A quantum eigenvalue solver based on tensor networks [0.0]
Electronic ground states are of central importance in chemical simulations, but have remained beyond the reach of efficient classical algorithms.
We introduce a hybrid quantum-classical eigenvalue solver that constructs a wavefunction ansatz from a linear combination of matrix product states in rotated orbital bases.
This study suggests a promising new avenue for scaling up simulations of strongly correlated chemical systems on near-term quantum hardware.
arXiv Detail & Related papers (2024-04-16T02:04:47Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Quantum computing critical exponents [0.0]
We show that the Variational Quantum-Classical Simulation algorithm admits a finite circuit depth scaling collapse when targeting the critical point of the transverse field Ising chain.
The order parameter only collapses on one side of the transition due to a slowdown of the quantum algorithm when crossing the phase transition.
arXiv Detail & Related papers (2021-04-02T17:38:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.