論文の概要: Probabilistic Metamodels for an Efficient Characterization of Complex
Driving Scenarios
- arxiv url: http://arxiv.org/abs/2110.02892v2
- Date: Thu, 7 Oct 2021 13:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 11:59:27.477561
- Title: Probabilistic Metamodels for an Efficient Characterization of Complex
Driving Scenarios
- Title(参考訳): 複雑な運転シナリオの効率的なキャラクタリゼーションのための確率的メタモデル
- Authors: Max Winkelmann, Mike Kohlhoff, Hadj Hamma Tadjine, Steffen M\"uller
- Abstract要約: テストケースを効率的に選択するための反復的アプローチを導入し、評価する。
以上の結果から, 予測性能に関しては, メタモデルの選択よりも, 適切なテストケースの選択が重要であることが示唆された。
これは、関連するテストケースは、スケーラブルな仮想環境とフレキシブルモデルを使用して検討する必要があることを意味する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To systematically validate the safe behavior of automated vehicles (AV), the
aim of scenario-based testing is to cluster the infinite situations an AV might
encounter into a finite set of functional scenarios. Every functional scenario,
however, can still manifest itself in a vast amount of variations. Thus,
metamodels are often used to perform analyses or to select specific variations
for examination. However, despite the safety criticalness of AV testing,
metamodels are usually seen as a part of an overall approach, and their
predictions are not further examined. In this paper, we analyze the predictive
performance of Gaussian processes (GP), deep Gaussian processes, extra-trees
(ET), and Bayesian neural networks (BNN), considering four scenarios with 5 to
20 inputs. Building on this, we introduce and evaluate an iterative approach to
efficiently select test cases. Our results show that regarding predictive
performance, the appropriate selection of test cases is more important than the
choice of metamodels. While their great flexibility allows BNNs to benefit from
large amounts of data and to model even the most complex scenarios, less
flexible models like GPs can convince with higher reliability. This implies
that relevant test cases have to be explored using scalable virtual
environments and flexible models so that more realistic test environments and
more trustworthy models can be used for targeted testing and validation.
- Abstract(参考訳): 自動走行車(av)の安全な動作を体系的に検証するために、シナリオベースのテストの目的は、avが遭遇する無限の状況を有限の機能シナリオにまとめることである。
しかし、すべての機能的なシナリオは、まだ膨大な量のバリエーションで現れうる。
したがって、メタモデルはしばしば分析や検査のための特定のバリエーションの選択に使用される。
しかし, AVテストの安全性の限界にもかかわらず, メタモデルは通常, 全体的なアプローチの一部として見なされる。
本稿では,5~20入力の4つのシナリオを考慮した,ガウス過程(GP),深ガウス過程(ET),ベイズニューラルネットワーク(BNN)の予測性能について検討する。
そこで本研究では,テストケースを効率的に選択するための反復的アプローチを導入し,評価する。
その結果,予測性能に関しては,メタモデルの選択よりもテストケースの適切な選択が重要であることがわかった。
優れた柔軟性により、BNNは大量のデータから恩恵を受け、最も複雑なシナリオさえモデル化できるが、GPのような柔軟性の低いモデルは信頼性を向上できる。
これは、関連するテストケースをスケーラブルな仮想環境と柔軟なモデルを使って検討し、より現実的なテスト環境とより信頼できるモデルがターゲットのテストや検証に使用できるようにする必要があります。
関連論文リスト
- Zero-shot Model Diagnosis [80.36063332820568]
ディープラーニングモデルを評価するための一般的なアプローチは、興味のある属性を持つラベル付きテストセットを構築し、そのパフォーマンスを評価することである。
本稿では,ゼロショットモデル診断(ZOOM)がテストセットやラベル付けを必要とせずに可能であることを論じる。
論文 参考訳(メタデータ) (2023-03-27T17:59:33Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Parameter-free Online Test-time Adaptation [19.279048049267388]
実世界の様々なシナリオにおいて,テスト時間適応手法が事前学習されたモデルにどのような効果をもたらすかを示す。
我々は特に「保守的」なアプローチを提案し、ラプラシアン適応最大推定(LAME)を用いてこの問題に対処する。
提案手法では,既存の手法よりもシナリオの平均精度がはるかに高く,メモリフットプリントもはるかに高速である。
論文 参考訳(メタデータ) (2022-01-15T00:29:16Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
テスト時間ロバスト化の問題、すなわちモデルロバスト性を改善するためにテストインプットを用いて検討する。
最近の先行研究ではテスト時間適応法が提案されているが、それぞれ追加の仮定を導入している。
モデルが確率的で適応可能な任意のテスト環境で使用できるシンプルなアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:55:11Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
モデル選択の重要性を強調するために、機械学習アルゴリズムを自動化するための一連の作業が行われた。
理想主義的な方法で解析的トラクタビリティと計算可能性を解決する必要性は、効率と適用性を確保することを可能にしている。
論文 参考訳(メタデータ) (2021-08-27T19:03:32Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - A Worrying Analysis of Probabilistic Time-series Models for Sales
Forecasting [10.690379201437015]
確率的時系列モデルは、不確実性の下で最適な決定を下すのに役立つため、予測分野で人気がある。
販売予測のための3つの顕著な確率的時系列モデルの性能解析を行った。
論文 参考訳(メタデータ) (2020-11-21T03:31:23Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
自動運転車の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているようだ。
既存の標準は、検証が要求をカバーするテストケースのセットだけを必要とする決定論的プロセスに焦点を当てています。
本稿では, 自動生成テストケースを最悪のシナリオに偏り付け, システムの挙動の統計的特性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-04T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。