論文の概要: Differential Anomaly Detection for Facial Images
- arxiv url: http://arxiv.org/abs/2110.03464v1
- Date: Thu, 7 Oct 2021 13:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 15:50:28.031582
- Title: Differential Anomaly Detection for Facial Images
- Title(参考訳): 顔画像の差分異常検出
- Authors: Mathias Ibsen, L\'azaro J. Gonz\'alez-Soler, Christian Rathgeb, Pawel
Drozdowski, Marta Gomez-Barrero, Christoph Busch
- Abstract要約: アイデンティティ攻撃は、不正アクセスと偽情報の拡散に使用できるため、セキュリティ上の大きな脅威となる。
同一性攻撃を検出するほとんどのアルゴリズムは、訓練時に未知の攻撃タイプに悪影響を及ぼす。
本稿では,まず画像から深層面の埋め込みを抽出する差動異常検出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 15.54185745912878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to their convenience and high accuracy, face recognition systems are
widely employed in governmental and personal security applications to
automatically recognise individuals. Despite recent advances, face recognition
systems have shown to be particularly vulnerable to identity attacks (i.e.,
digital manipulations and attack presentations). Identity attacks pose a big
security threat as they can be used to gain unauthorised access and spread
misinformation. In this context, most algorithms for detecting identity attacks
generalise poorly to attack types that are unknown at training time. To tackle
this problem, we introduce a differential anomaly detection framework in which
deep face embeddings are first extracted from pairs of images (i.e., reference
and probe) and then combined for identity attack detection. The experimental
evaluation conducted over several databases shows a high generalisation
capability of the proposed method for detecting unknown attacks in both the
digital and physical domains.
- Abstract(参考訳): その利便性と高精度のため、顔認識システムは、個人を自動認識するために、政府や個人のセキュリティアプリケーションに広く利用されている。
近年の進歩にもかかわらず、顔認識システムは特にアイデンティティアタック(デジタル操作やアタックプレゼンテーション)に弱いことが示されている。
アイデンティティ攻撃は、不正アクセスと偽情報の拡散に使用できるため、セキュリティ上の大きな脅威となる。
この文脈では、アイデンティティアタックを検出するほとんどのアルゴリズムは、トレーニング時に未知の攻撃タイプに対してあまり一般化しない。
この問題に対処するために,我々は,まず画像ペア(参照とプローブ)から深部顔埋め込みを抽出し,次にアイデンティティアタック検出のために組み合わせた差分異常検出フレームワークを提案する。
複数のデータベースを用いた実験により,ディジタル領域と物理領域の両方において未知の攻撃を検出する手法の一般化性が示された。
関連論文リスト
- TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
顔認識システムは、高セキュリティアプリケーションに広くデプロイされている。
フェースモーフィングのようなデジタル操作は、顔認識システムにセキュリティ上の脅威をもたらす。
本稿では,ディープラーニングに基づく顔認識システムを,顔形態攻撃に対してより堅牢なものにするための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T21:04:05Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Towards an Accurate and Secure Detector against Adversarial
Perturbations [58.02078078305753]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然・人工データの識別的分解を通じて、敵対的なパターンを検出する。
本研究では,秘密鍵を用いた空間周波数判別分解に基づく,高精度かつセキュアな対向検波器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - A Novel Active Solution for Two-Dimensional Face Presentation Attack
Detection [0.0]
本研究では,プレゼンテーション攻撃検出に関わる課題と解決策について,現状を考察する。
プレゼンテーションアタックは、写真、ビデオ、マスク、化粧など、生きていない顔をカメラに提示する試みである。
本稿では,既存の文献の弱点を克服する効果的な能動的提示攻撃検出手法を提案する。
論文 参考訳(メタデータ) (2022-12-14T00:30:09Z) - Face Presentation Attack Detection [59.05779913403134]
顔認識技術は、チェックインやモバイル支払いといった日々の対話的アプリケーションで広く利用されている。
しかしながら、プレゼンテーションアタック(PA)に対する脆弱性は、超セキュアなアプリケーションシナリオにおける信頼性の高い使用を制限する。
論文 参考訳(メタデータ) (2022-12-07T14:51:17Z) - Attacking Face Recognition with T-shirts: Database, Vulnerability
Assessment and Detection [0.0]
我々は,100のユニークな提示攻撃器を用いた1,608のTシャツ攻撃の新しいTシャツ顔提示攻撃データベースを提案する。
このような攻撃は、顔認識システムのセキュリティを損なう可能性があり、いくつかの最先端の攻撃検出メカニズムが、新しい攻撃に対して堅牢に一般化できないことを示す。
論文 参考訳(メタデータ) (2022-11-14T14:11:23Z) - Psychophysical Evaluation of Human Performance in Detecting Digital Face
Image Manipulations [14.63266615325105]
この研究は、心理物理学の分野から採用された原則に基づいて、Webベースの遠隔視覚的識別実験を導入する。
本研究では,顔のスワップ,フォーミング,リタッチなど,さまざまな種類の顔画像を検出する能力について検討する。
論文 参考訳(メタデータ) (2022-01-28T12:45:33Z) - Robust Physical-World Attacks on Face Recognition [52.403564953848544]
ディープニューラルネットワーク(DNN)の開発によって顔認識が大幅に促進された
近年の研究では、DNNは敵対的な事例に対して非常に脆弱であることが示されており、現実世界の顔認識の安全性に対する深刻な懸念が提起されている。
ステッカーによる顔認識の物理的攻撃について検討し、その対向的堅牢性をよりよく理解する。
論文 参考訳(メタデータ) (2021-09-20T06:49:52Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。