Authentication of Smart Grid Communications using Quantum Key
Distribution
- URL: http://arxiv.org/abs/2110.03516v2
- Date: Thu, 28 Jul 2022 12:47:28 GMT
- Title: Authentication of Smart Grid Communications using Quantum Key
Distribution
- Authors: Muneer Alshowkan, Philip Evans, Michael Starke, Duncan Earl, Nicholas
Peters
- Abstract summary: We report the first use of quantum key distribution (QKD) keys in the authentication of smart grid communications.
The developed method was prototyped in a software package to manage and utilize cryptographic keys.
This demonstration showcases the feasibility of using QKD to improve the security of critical infrastructure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart grid solutions enable utilities and customers to better monitor and
control energy use via information and communications technology. Information
technology is intended to improve the future electric grid's reliability,
efficiency, and sustainability by implementing advanced monitoring and control
systems. However, leveraging modern communications systems also makes the grid
vulnerable to cyberattacks. Here we report the first use of quantum key
distribution (QKD) keys in the authentication of smart grid communications. In
particular, we make such demonstration on a deployed electric utility fiber
network. The developed method was prototyped in a software package to manage
and utilize cryptographic keys to authenticate machine-to-machine
communications used for supervisory control and data acquisition (SCADA). This
demonstration showcases the feasibility of using QKD to improve the security of
critical infrastructure, including future distributed energy resources (DERs),
such as energy storage.
Related papers
- An Efficiency Firmware Verification Framework for Public Key Infrastructure with Smart Grid and Energy Storage System [0.6757476692230008]
Rapid evolution of smart grids has attracted numerous nation-state actors seeking to disrupt the power infrastructure of adversarial nations.
We propose a digital signing and verification framework grounded in Public Key Infrastructure (PKI), specifically tailored for resource-constrained devices such as smart meters.
arXiv Detail & Related papers (2025-01-10T05:43:31Z) - Quantum Key Distribution Networks -- Key Management: A Survey [1.3611372330340248]
Quantum Key Distribution (QKD) is a promising technology that provides an Information-Theoretically Secure (ITS) solution to the secret-key agreement problem between two remote parties.
QKD networks based on trusted repeaters are built to provide service to a larger number of parties at arbitrary distances.
arXiv Detail & Related papers (2024-08-08T16:42:45Z) - Detection of Energy Consumption Cyber Attacks on Smart Devices [1.515687944002438]
This paper presents a lightweight technique for detecting energy consumption attacks on smart home devices by analyzing received packets.
It accounts for resource constraints and promptly alerts administrators upon detecting an attack.
arXiv Detail & Related papers (2024-04-30T10:29:25Z) - DynamiQS: Quantum Secure Authentication for Dynamic Charging of Electric Vehicles [61.394095512765304]
Dynamic Wireless Power Transfer (DWPT) is a novel technology that allows charging an electric vehicle while driving.
Recent advancements in quantum computing jeopardize classical public key cryptography.
We propose DynamiQS, the first post-quantum secure authentication protocol for dynamic wireless charging.
arXiv Detail & Related papers (2023-12-20T09:40:45Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Quantum Key Distribution for Critical Infrastructures: Towards Cyber
Physical Security for Hydropower and Dams [0.4166512373146748]
Hydropower facilities are often remotely monitored or controlled from a centralized remote-control room.
Communications may use the internet to remote control a facility's control systems, or it may involve sending control commands over a network from a control room to a machine.
The content could be encrypted and decrypted using a public key to protect the communicated information.
In contrast, quantum key distribution (QKD) is not based upon a computational problem, and offers an alternative to conventional public-key cryptography.
arXiv Detail & Related papers (2023-10-19T18:59:23Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
We employ computer vision techniques of AI to design a non-invasive load monitoring method for smart electric energy management.
We propose to recognize all electric loads from color feature images using a U-shape deep neural network with multi-scale feature extraction and attention mechanism.
arXiv Detail & Related papers (2023-08-08T04:52:19Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - FedDiSC: A Computation-efficient Federated Learning Framework for Power
Systems Disturbance and Cyber Attack Discrimination [1.0621485365427565]
This paper proposes a novel Federated Learning-based privacy-preserving and communication-efficient attack detection framework, known as FedDiSC.
We put forward a representation learning-based Deep Auto-Encoder network to accurately detect power system and cybersecurity anomalies.
To adapt our proposed framework to the timeliness of real-world cyberattack detection in SGs, we leverage the use of a gradient privacy-preserving quantization scheme known as DP-SIGNSGD.
arXiv Detail & Related papers (2023-04-07T13:43:57Z) - Web-Based Platform for Evaluation of Resilient and Transactive
Smart-Grids [0.0]
Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques.
We present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks.
arXiv Detail & Related papers (2022-06-11T15:34:33Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.