Quantum Key Distribution Networks -- Key Management: A Survey
- URL: http://arxiv.org/abs/2408.04580v1
- Date: Thu, 8 Aug 2024 16:42:45 GMT
- Title: Quantum Key Distribution Networks -- Key Management: A Survey
- Authors: Emir Dervisevic, Amina Tankovic, Ehsan Fazel, Ramana Kompella, Peppino Fazio, Miroslav Voznak, Miralem Mehic,
- Abstract summary: Quantum Key Distribution (QKD) is a promising technology that provides an Information-Theoretically Secure (ITS) solution to the secret-key agreement problem between two remote parties.
QKD networks based on trusted repeaters are built to provide service to a larger number of parties at arbitrary distances.
- Score: 1.3611372330340248
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Secure communication makes the widespread use of telecommunication networks and services possible. With the constant progress of computing and mathematics, new cryptographic methods are being diligently developed. Quantum Key Distribution (QKD) is a promising technology that provides an Information-Theoretically Secure (ITS) solution to the secret-key agreement problem between two remote parties. QKD networks based on trusted repeaters are built to provide service to a larger number of parties at arbitrary distances. They function as an add-on technology to traditional networks, generating, managing, distributing, and supplying ITS cryptographic keys. Since key resources are limited, integrating QKD network services into critical infrastructures necessitates effective key management. As a result, this paper provides a comprehensive review of QKD network key management approaches. They are analyzed to facilitate the identification of potential strategies and accelerate the future development of QKD networks.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - An Efficient Routing Protocol for Quantum Key Distribution Networks [9.203625000707856]
Quantum key distribution (QKD) can provide point-to-point information-theoretic secure key services for two connected users.
QOLSR considerably improves quantum key utilization in QKD networks through link-state awareness and path optimization.
arXiv Detail & Related papers (2022-04-29T07:37:45Z) - An Information-theoretical Secured Byzantine-fault Tolerance Consensus
in Quantum Key Distribution Network [13.007691543559666]
Quantum key distribution (QKD) networks are expected to provide information-theoretical secured (ITS) communication over long distances.
We propose an ITS Byzantine-fault tolerance (BFT) QKD network scheme to achieve end-to-end key distribution based on point-to-point QKD links.
We theoretically analyze proposed ITSBFT-QKD network scheme from four aspects: QKD key distribution security, temporary signature security, consensus security, and leader election fairness.
arXiv Detail & Related papers (2022-04-21T01:04:39Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Authentication of Metropolitan Quantum Key Distribution Network with
Post-quantum Cryptography [13.937739507933578]
The Jinan field metropolitan QKD network comprised of 14 user nodes and 5 optical switching nodes.
The feasibility, effectiveness and stability of the post-quantum cryptography (PQC) algorithm and advantages of replacing trusted relays with optical switching were verified.
arXiv Detail & Related papers (2021-06-04T12:15:57Z) - Optimizing the deployment of quantum key distribution switch-based
networks [0.4643589635376553]
We present a QKD network architecture that provides a significant reduction in the cost of deploying QKD networks by using optical switches.
We demonstrate that the switch-based architecture allows achieving significant resource savings of up to 28%, while the throughput is reduced by 8% only.
arXiv Detail & Related papers (2021-04-09T04:13:04Z) - Feasibility Study for CubeSat Based Trusted Node Configuration Global
QKD Network [0.0]
Quantum key distribution (QKD) is the most used protocol in the context of quantum cryptography.
This paper summarizes technical challenges and possible solutions to enable a global QKD network using CubeSats.
arXiv Detail & Related papers (2021-02-26T15:13:31Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.