論文の概要: Surrogate-Based Black-Box Optimization Method for Costly Molecular
Properties
- arxiv url: http://arxiv.org/abs/2110.03522v1
- Date: Fri, 1 Oct 2021 15:28:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-10 09:17:18.378052
- Title: Surrogate-Based Black-Box Optimization Method for Costly Molecular
Properties
- Title(参考訳): コスト分子特性に対するサロゲート基ブラックボックス最適化法
- Authors: Jules Leguy, Thomas Cauchy, Beatrice Duval, Benoit Da Mota
- Abstract要約: 本稿では,サロゲートをベースとしたブラックボックス最適化手法を提案する。
提案手法は, 純粋にメタヒューリスティックなアプローチよりもはるかに高速に, 利害関係のコスト特性を最適化できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI-assisted molecular optimization is a very active research field as it is
expected to provide the next-generation drugs and molecular materials. An
important difficulty is that the properties to be optimized rely on costly
evaluations. Machine learning methods are investigated with success to predict
these properties, but show generalization issues on less known areas of the
chemical space. We propose here a surrogate-based black box optimization
method, to tackle jointly the optimization and machine learning problems. It
consists in optimizing the expected improvement of the surrogate of a molecular
property using an evolutionary algorithm. The surrogate is defined as a
Gaussian Process Regression (GPR) model, learned on a relevant area of the
search space with respect to the property to be optimized. We show that our
approach can successfully optimize a costly property of interest much faster
than a purely metaheuristic approach.
- Abstract(参考訳): AIによる分子最適化は非常に活発な研究分野であり、次世代の医薬品や分子材料の提供が期待されている。
重要な困難は、最適化されるプロパティがコスト評価に依存することである。
機械学習手法はこれらの特性を予測するのに成功しているが、化学空間のあまり知られていない領域の一般化問題を示す。
そこで本研究では,サロゲートを用いたブラックボックス最適化手法を提案する。
進化的アルゴリズムを用いて分子特性のサロゲートの改善を最適化する。
シュロゲートはガウス過程回帰(GPR)モデルとして定義され、最適化されるプロパティに関して検索空間の関連領域で学習される。
提案手法は, 純粋にメタヒューリスティックなアプローチよりもはるかに高速に, 利害関係のコスト特性を最適化できることを示す。
関連論文リスト
- Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
変換器を用いた拡散言語モデル(TransDLM)を用いたテキスト誘導多目的分子最適化手法を提案する。
TransDLMは標準化された化学命名法を分子の意味表現として利用し、プロパティ要求をテキスト記述に暗黙的に埋め込む。
提案手法は, 分子構造類似性を最適化し, ベンチマークデータセットの化学的特性を向上するための最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-10-17T14:30:27Z) - XMOL: Explainable Multi-property Optimization of Molecules [2.320539066224081]
複数の分子特性を同時に最適化するために,分子のマルチプロパティ最適化(XMOL)を提案する。
我々のアプローチは、最先端の幾何学的拡散モデルに基づいており、それらをマルチプロパティ最適化に拡張している。
最適化プロセス全体を通して解釈的および説明可能な技術を統合する。
論文 参考訳(メタデータ) (2024-09-12T06:35:04Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Molecule optimization via multi-objective evolutionary in implicit
chemical space [8.72872397589296]
MOMOは、化学知識の学習と多目的進化探索を組み合わせた多目的分子最適化フレームワークである。
4つの多目的特性と類似性最適化タスクにおけるMOMOの性能を実証し、ケーススタディを通してMOMOの探索能力を示す。
論文 参考訳(メタデータ) (2022-12-17T09:09:23Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
データ駆動、つまりサロゲート支援、進化的最適化は、高価なブラックボックス最適化問題に対処するための効果的なアプローチとして認識されている。
本稿では,データ駆動型進化的最適化により動的最適化問題を解くための,シンプルだが効果的な伝達学習フレームワークを提案する。
提案手法の有効性を実世界のケーススタディで実証した。
論文 参考訳(メタデータ) (2022-11-05T11:19:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural
Networks for Inverse Molecular Design [1.6114012813668934]
逆分子設計、すなわち特定の目的特性を持つ分子を設計することは最適化問題として考えられる。
ジャヌス (Janus) は、2つの個体群を伝播させ、もう1つは探索用、もう1つは搾取用の遺伝的アルゴリズムである。
Janusは、化学空間のサンプリングを増強するために能動的学習を通じて分子特性を近似するディープニューラルネットワークによって強化される。
論文 参考訳(メタデータ) (2021-06-07T23:41:34Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。