論文の概要: Boxhead: A Dataset for Learning Hierarchical Representations
- arxiv url: http://arxiv.org/abs/2110.03628v1
- Date: Thu, 7 Oct 2021 17:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 16:12:18.570782
- Title: Boxhead: A Dataset for Learning Hierarchical Representations
- Title(参考訳): boxhead:階層表現を学ぶためのデータセット
- Authors: Yukun Chen, Frederik Tr\"auble, Andrea Dittadi, Stefan Bauer, Bernhard
Sch\"olkopf
- Abstract要約: 階層的に構造化された基底構造生成因子を持つデータセットであるBoxheadを紹介する。
階層的モデルは一般に階層的に配置された因子の非絡み合いという点で単層VAEよりも優れる。
- 参考スコア(独自算出の注目度): 16.036906124241835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentanglement is hypothesized to be beneficial towards a number of
downstream tasks. However, a common assumption in learning disentangled
representations is that the data generative factors are statistically
independent. As current methods are almost solely evaluated on toy datasets
where this ideal assumption holds, we investigate their performance in
hierarchical settings, a relevant feature of real-world data. In this work, we
introduce Boxhead, a dataset with hierarchically structured ground-truth
generative factors. We use this novel dataset to evaluate the performance of
state-of-the-art autoencoder-based disentanglement models and observe that
hierarchical models generally outperform single-layer VAEs in terms of
disentanglement of hierarchically arranged factors.
- Abstract(参考訳): 絡み合いは多くの下流タスクに対して有益であると仮定される。
しかし、不整合表現の学習における一般的な仮定は、データ生成因子が統計的に独立であるということである。
現在の手法は、この理想的な仮定が成り立つトイデータセット上でのみ評価されるため、実際のデータの関連する特徴である階層的設定におけるその性能について検討する。
本稿では,階層的に構成された基底生成因子を持つデータセットであるboxheadを紹介する。
このデータセットを用いて,最先端のオートエンコーダに基づく不等角化モデルの性能評価を行い,階層的に配置された因子の等角化の観点から,階層モデルが一般に単層vaeを上回ることを観測した。
関連論文リスト
- From Logits to Hierarchies: Hierarchical Clustering made Simple [16.132657141993548]
事前訓練された非階層クラスタリングモデル上に実装された軽量なプロシージャは、階層クラスタリングに特化して設計されたモデルより優れていることを示す。
提案手法は,微調整を必要とせず,ログを出力する事前学習クラスタリングモデルに適用可能である。
論文 参考訳(メタデータ) (2024-10-10T12:27:45Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
本稿では,サンプルをサブグループに体系的に階層化するフレームワークであるData-IQを提案する。
実世界の4つの医療データセットに対するData-IQの利点を実験的に実証した。
論文 参考訳(メタデータ) (2022-10-24T08:57:55Z) - Adaptive Sampling Strategies to Construct Equitable Training Datasets [0.7036032466145111]
コンピュータビジョンから自然言語処理までの領域では、機械学習モデルがスタークの相違を示すことが示されている。
これらのパフォーマンスギャップに寄与する要因の1つは、モデルがトレーニングしたデータに表現力の欠如である。
公平なトレーニングデータセットを作成する際の問題を形式化し、この問題に対処するための統計的枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-31T19:19:30Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - Evaluating Predictive Uncertainty and Robustness to Distributional Shift
Using Real World Data [0.0]
シフト天気予報データセットを用いて、一般的な回帰作業のためのメトリクスを提案する。
また,これらの指標を用いたベースライン手法の評価を行った。
論文 参考訳(メタデータ) (2021-11-08T17:32:10Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - A Topological-Framework to Improve Analysis of Machine Learning Model
Performance [5.3893373617126565]
本稿では、データセットをモデルが動作する「空間」として扱う機械学習モデルを評価するためのフレームワークを提案する。
本稿では,各サブポピュレーション間でのモデル性能の保存と解析に有用なトポロジカルデータ構造であるプレシーブについて述べる。
論文 参考訳(メタデータ) (2021-07-09T23:11:13Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
データセット間設定下での様々な要約モデルの性能について検討する。
異なるドメインの5つのデータセットに対する11の代表的な要約システムに関する包括的な研究は、モデルアーキテクチャと生成方法の影響を明らかにしている。
論文 参考訳(メタデータ) (2020-10-11T02:19:15Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。