Learning Higher-Order Dynamics in Video-Based Cardiac Measurement
- URL: http://arxiv.org/abs/2110.03690v1
- Date: Thu, 7 Oct 2021 16:29:55 GMT
- Title: Learning Higher-Order Dynamics in Video-Based Cardiac Measurement
- Authors: Brian L. Hill, Xin Liu, Daniel McDuff
- Abstract summary: In the cardiac pulse, the second derivative can be used as an indicator of blood pressure and arterial disease.
Recent developments in camera-based vital sign measurement have shown that cardiac measurements can be recovered with impressive accuracy from videos.
We provide evidence that higher-order dynamics are better estimated by neural models when explicitly optimized for in the loss function.
- Score: 5.571184025017747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer vision methods typically optimize for first-order dynamics (e.g.,
optical flow). However, in many cases the properties of interest are subtle
variations in higher-order changes, such as acceleration. This is true in the
cardiac pulse, where the second derivative can be used as an indicator of blood
pressure and arterial disease. Recent developments in camera-based vital sign
measurement have shown that cardiac measurements can be recovered with
impressive accuracy from videos; however, the majority of research has focused
on extracting summary statistics such as heart rate. Less emphasis has been put
on the accuracy of waveform morphology that is necessary for many clinically
impactful scenarios. In this work, we provide evidence that higher-order
dynamics are better estimated by neural models when explicitly optimized for in
the loss function. Furthermore, adding second-derivative inputs also improves
performance when estimating second-order dynamics. By incorporating the second
derivative of both the input frames and the target vital sign signals into the
training procedure, our model is better able to estimate left ventricle
ejection time (LVET) intervals.
Related papers
- Recovering Pulse Waves from Video Using Deep Unrolling and Deep Equilibrium Models [45.94962431110573]
Camera-based monitoring of vital signs, also known as imaging photoplethysmography (i), has seen applications in driver-monitoring, affective computing, and more.
We introduce methods that combine signal processing and deep learning methods in an inverse problem.
arXiv Detail & Related papers (2025-03-21T16:11:21Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.
We incorporate elements modeling effects to better align simulated data with real-world measurements.
The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - LaMoD: Latent Motion Diffusion Model For Myocardial Strain Generation [5.377722774297911]
We introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos.
Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images.
arXiv Detail & Related papers (2024-07-02T12:54:32Z) - Automatic Cardiac Pathology Recognition in Echocardiography Images Using Higher Order Dynamic Mode Decomposition and a Vision Transformer for Small Datasets [2.0286377328378737]
Heart diseases are the main international cause of human defunction. According to the WHO, nearly 18 million people decease each year because of heart diseases.
In this work, an automatic cardiac pathology recognition system based on a novel deep learning framework is proposed.
arXiv Detail & Related papers (2024-04-30T14:16:45Z) - Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping [1.498019339784467]
We propose novel alternatives to the traditional iVFM optimization scheme by utilizing physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach.
Both approaches demonstrate comparable reconstruction performance to the original iVFM algorithm.
The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.
arXiv Detail & Related papers (2024-03-19T17:35:17Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z) - Optimised Convolutional Neural Networks for Heart Rate Estimation and
Human Activity Recognition in Wrist Worn Sensing Applications [3.8137985834223507]
We provide improved heart rate and human activity recognition simultaneously at low sample rates.
This simplifies hardware design and reduces costs and power budgets.
We apply two deep learning pipelines, one for human activity recognition and one for heart rate estimation.
arXiv Detail & Related papers (2020-03-30T11:44:58Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.