論文の概要: How to Build a Curb Dataset with LiDAR Data for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2110.03968v1
- Date: Fri, 8 Oct 2021 08:32:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-11 15:07:26.251775
- Title: How to Build a Curb Dataset with LiDAR Data for Autonomous Driving
- Title(参考訳): 自動運転のためのLiDARデータを用いたカーブデータセット構築方法
- Authors: Dongfeng Bai, Tongtong Cao, Jingming Guo and Bingbing Liu
- Abstract要約: ビデオカメラと3D LiDARは、検出を抑えるために自動運転車に搭載されている。
カメラベースストレッチ検出手法は、難解な照明条件に悩まされる。
テンプレートアノテーションや効率的なテンプレートラベリングアプローチを備えたデータセットは、要求が高い。
- 参考スコア(独自算出の注目度): 11.632427050596728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Curbs are one of the essential elements of urban and highway traffic
environments. Robust curb detection provides road structure information for
motion planning in an autonomous driving system. Commonly, video cameras and 3D
LiDARs are mounted on autonomous vehicles for curb detection. However,
camera-based methods suffer from challenging illumination conditions. During
the long period of time before wide application of Deep Neural Network (DNN)
with point clouds, LiDAR-based curb detection methods are based on hand-crafted
features, which suffer from poor detection in some complex scenes. Recently,
DNN-based dynamic object detection using LiDAR data has become prevalent, while
few works pay attention to curb detection with a DNN approach due to lack of
labeled data. A dataset with curb annotations or an efficient curb labeling
approach, hence, is of high demand...
- Abstract(参考訳): 縁石は都市と高速道路の交通環境の重要な要素の1つである。
ロバスト縁石検出は、自律運転システムにおける運動計画のための道路構造情報を提供する。
一般的に、ビデオカメラと3D LiDARは、検知を抑えるために自動運転車に搭載される。
しかし、カメラベースの方法は照明条件が困難である。
遠点雲を用いたDeep Neural Network (DNN) の広範適用までの長い期間において,LiDARをベースとしたストレッチ検出法は,複雑なシーンでは検出が不十分な手作りの特徴に基づいている。
近年,ラベル付きデータがないため,DNN手法による検出を抑える研究はほとんどないが,LiDARデータを用いた動的オブジェクト検出が盛んに行われている。
制限アノテーションや効率的な制限ラベル付けアプローチを備えたデータセットは、高い需要を抱えています。
関連論文リスト
- Annotation-Free Curb Detection Leveraging Altitude Difference Image [9.799565515089617]
自動運転車の安全性を確保するためには、道路封鎖が不可欠である。
縁石検出の現在の方法は、カメラ画像やLiDAR点雲に依存している。
本研究は,ADI(Altitude Difference Image)を利用したアノテーションのないストレッチ検出手法を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:29:41Z) - LiDAR-based curb detection for ground truth annotation in automated
driving validation [2.954315548942922]
本稿では,LiDARセンサから取得した点雲列中の3次元ストレッチを検出する手法を提案する。
シーケンスレベル処理ステップは、車両のオドメトリーを用いて、再構成された点雲内の3D縁石を推定する。
これらの検出は、ラベリングパイプラインの事前アノテーションとして使用して、ストレッチ関連地上真実データを効率的に生成することができる。
論文 参考訳(メタデータ) (2023-12-01T12:15:09Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception [0.0]
このデータセットは、同期して校正されたLiDAR、カメラ、および360度の視野をカバーするレーダーセンサーを備えた176のシーンで構成されている。
収集したデータは、昼間、夜、雨の間に、高速道路、都市、郊外で撮影された。
我々は3次元物体検出のための一次元・多モードベースラインモデルを訓練した。
論文 参考訳(メタデータ) (2022-11-17T10:19:59Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
我々は、新しいデータ収集プロセスを通じて、堅牢な自律運転を可能にする新しいデータセットを提案する。
データセットには、高精度GPS/INSとともに、カメラとLiDARセンサーからの画像と点雲が含まれている。
道路・オブジェクトのアモーダルセグメンテーションにおけるベースラインの性能を解析することにより,このデータセットの特異性を実証する。
論文 参考訳(メタデータ) (2022-08-01T22:55:32Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
小さな、遠く、あるいは非常に隠蔽された物体は、検出するためのLiDAR点雲に限られた情報があるため、特に困難である。
本稿では,過去データから文脈情報を抽出する,エンドツーエンドのトレーニング可能な新しいフレームワークを提案する。
このフレームワークは現代のほとんどの3D検出アーキテクチャと互換性があり、複数の自律走行データセットの平均精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-03-22T00:58:27Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
我々は、ビジョンベース検出器のこの重要な問題を露呈する、CODAという挑戦的なデータセットを導入する。
大規模自動運転データセットで訓練された標準物体検出器の性能は、mARの12.8%以下に著しく低下した。
我々は最先端のオープンワールドオブジェクト検出器を実験し、CODAの新しいオブジェクトを確実に識別できないことを発見した。
論文 参考訳(メタデータ) (2022-03-15T08:32:56Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
レーン検出は今後しばらくは未解決の問題として残るだろう。
二重円錐 Gated Recurrent Units (ConvGRUs) を用いた時空間ネットワークは、困難なシーンにおける車線検出に対処することを提案した。
我々のモデルは最先端の車線検出モデルより優れている。
論文 参考訳(メタデータ) (2020-08-10T06:50:48Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
魚眼レンズを装着した校正単眼カメラを用いて3Dパラメータを推定するロバストな手法を提案する。
我々のアプローチでは、車両が90%以上の精度で、リアルタイムで距離を抑えることができる。
論文 参考訳(メタデータ) (2020-02-28T00:24:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。