Graph Meta Network for Multi-Behavior Recommendation
- URL: http://arxiv.org/abs/2110.03969v1
- Date: Fri, 8 Oct 2021 08:38:27 GMT
- Title: Graph Meta Network for Multi-Behavior Recommendation
- Authors: Lianghao Xia, Yong Xu, Chao Huang, Peng Dai, Liefeng Bo
- Abstract summary: We propose a Multi-Behavior recommendation framework with Graph Meta Network to incorporate the multi-behavior pattern modeling into a meta-learning paradigm.
Our developed MB-GMN empowers the user-item interaction learning with the capability of uncovering type-dependent behavior representations.
- Score: 24.251784947151755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern recommender systems often embed users and items into low-dimensional
latent representations, based on their observed interactions. In practical
recommendation scenarios, users often exhibit various intents which drive them
to interact with items with multiple behavior types (e.g., click,
tag-as-favorite, purchase). However, the diversity of user behaviors is ignored
in most of the existing approaches, which makes them difficult to capture
heterogeneous relational structures across different types of interactive
behaviors. Exploring multi-typed behavior patterns is of great importance to
recommendation systems, yet is very challenging because of two aspects: i) The
complex dependencies across different types of user-item interactions; ii)
Diversity of such multi-behavior patterns may vary by users due to their
personalized preference. To tackle the above challenges, we propose a
Multi-Behavior recommendation framework with Graph Meta Network to incorporate
the multi-behavior pattern modeling into a meta-learning paradigm. Our
developed MB-GMN empowers the user-item interaction learning with the
capability of uncovering type-dependent behavior representations, which
automatically distills the behavior heterogeneity and interaction diversity for
recommendations. Extensive experiments on three real-world datasets show the
effectiveness of MB-GMN by significantly boosting the recommendation
performance as compared to various state-of-the-art baselines. The source code
is available athttps://github.com/akaxlh/MB-GMN.
Related papers
- MDAP: A Multi-view Disentangled and Adaptive Preference Learning Framework for Cross-Domain Recommendation [63.27390451208503]
Cross-domain Recommendation systems leverage multi-domain user interactions to improve performance.
We propose the Multi-view Disentangled and Adaptive Preference Learning framework.
Our framework uses a multiview encoder to capture diverse user preferences.
arXiv Detail & Related papers (2024-10-08T10:06:45Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Multi-view Multi-behavior Contrastive Learning in Recommendation [52.42597422620091]
Multi-behavior recommendation (MBR) aims to jointly consider multiple behaviors to improve the target behavior's performance.
We propose a novel Multi-behavior Multi-view Contrastive Learning Recommendation framework.
arXiv Detail & Related papers (2022-03-20T15:13:28Z) - Contrastive Meta Learning with Behavior Multiplicity for Recommendation [42.15990960863924]
A well-informed recommendation framework could not only help users identify their interested items, but also benefit the revenue of various online platforms.
We propose Contrastive Meta Learning (CML) to maintain dedicated cross-type behavior dependency for different users.
Our method consistently outperforms various state-of-the-art recommendation methods.
arXiv Detail & Related papers (2022-02-17T08:51:24Z) - Multiplex Behavioral Relation Learning for Recommendation via Memory
Augmented Transformer Network [25.563806871858073]
This work proposes a Memory-Augmented Transformer Networks (MATN) to enable the recommendation with multiplex behavioral relational information.
In our MATN framework, we first develop a transformer-based multi-behavior relation encoder, to make the learned interaction representations be reflective of the cross-type behavior relations.
A memory attention network is proposed to supercharge MATN capturing the contextual signals of different types of behavior into the category-specific latent embedding space.
arXiv Detail & Related papers (2021-10-08T09:54:43Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.