Multi-Behavior Sequential Recommendation with Temporal Graph Transformer
- URL: http://arxiv.org/abs/2206.02687v1
- Date: Mon, 6 Jun 2022 15:42:54 GMT
- Title: Multi-Behavior Sequential Recommendation with Temporal Graph Transformer
- Authors: Lianghao Xia, Chao Huang, Yong Xu, Jian Pei
- Abstract summary: We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
- Score: 66.10169268762014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling time-evolving preferences of users with their sequential item
interactions, has attracted increasing attention in many online applications.
Hence, sequential recommender systems have been developed to learn the dynamic
user interests from the historical interactions for suggesting items. However,
the interaction pattern encoding functions in most existing sequential
recommender systems have focused on single type of user-item interactions. In
many real-life online platforms, user-item interactive behaviors are often
multi-typed (e.g., click, add-to-favorite, purchase) with complex cross-type
behavior inter-dependencies. Learning from informative representations of users
and items based on their multi-typed interaction data, is of great importance
to accurately characterize the time-evolving user preference. In this work, we
tackle the dynamic user-item relation learning with the awareness of
multi-behavior interactive patterns. Towards this end, we propose a new
Temporal Graph Transformer (TGT) recommendation framework to jointly capture
dynamic short-term and long-range user-item interactive patterns, by exploring
the evolving correlations across different types of behaviors. The new TGT
method endows the sequential recommendation architecture to distill dedicated
knowledge for type-specific behavior relational context and the implicit
behavior dependencies. Experiments on the real-world datasets indicate that our
method TGT consistently outperforms various state-of-the-art recommendation
methods. Our model implementation codes are available at
https://github.com/akaxlh/TGT.
Related papers
- Multi-Behavior Hypergraph-Enhanced Transformer for Sequential
Recommendation [33.97708796846252]
We introduce a new Multi-Behavior Hypergraph-enhanced Transformer framework (MBHT) to capture both short-term and long-term cross-type behavior dependencies.
Specifically, a multi-scale Transformer is equipped with low-rank self-attention to jointly encode behavior-aware sequential patterns from fine-grained and coarse-grained levels.
arXiv Detail & Related papers (2022-07-12T15:07:21Z) - Multiplex Behavioral Relation Learning for Recommendation via Memory
Augmented Transformer Network [25.563806871858073]
This work proposes a Memory-Augmented Transformer Networks (MATN) to enable the recommendation with multiplex behavioral relational information.
In our MATN framework, we first develop a transformer-based multi-behavior relation encoder, to make the learned interaction representations be reflective of the cross-type behavior relations.
A memory attention network is proposed to supercharge MATN capturing the contextual signals of different types of behavior into the category-specific latent embedding space.
arXiv Detail & Related papers (2021-10-08T09:54:43Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Graph Meta Network for Multi-Behavior Recommendation [24.251784947151755]
We propose a Multi-Behavior recommendation framework with Graph Meta Network to incorporate the multi-behavior pattern modeling into a meta-learning paradigm.
Our developed MB-GMN empowers the user-item interaction learning with the capability of uncovering type-dependent behavior representations.
arXiv Detail & Related papers (2021-10-08T08:38:27Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
We propose a new deep learning-based sequential recommendation approach based on a Position-enhanced and Time-aware Graph Convolutional Network (PTGCN)
PTGCN models the sequential patterns and temporal dynamics between user-item interactions by defining a position-enhanced and time-aware graph convolution operation.
It realizes the high-order connectivity between users and items by stacking multi-layer graph convolutions.
arXiv Detail & Related papers (2021-07-12T07:34:20Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Multi-Interactive Attention Network for Fine-grained Feature Learning in
CTR Prediction [48.267995749975476]
In the Click-Through Rate (CTR) prediction scenario, user's sequential behaviors are well utilized to capture the user interest.
Existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction.
We propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features.
arXiv Detail & Related papers (2020-12-13T05:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.