Rapid head-pose detection for automated slice prescription of
fetal-brain MRI
- URL: http://arxiv.org/abs/2110.04140v1
- Date: Fri, 8 Oct 2021 13:59:05 GMT
- Title: Rapid head-pose detection for automated slice prescription of
fetal-brain MRI
- Authors: Malte Hoffmann, Esra Abaci Turk, Borjan Gagoski, Leah Morgan, Paul
Wighton, M. Dylan Tisdall, Martin Reuter, Elfar Adalsteinsson, P. Ellen
Grant, Lawrence L. Wald, Andr\'e J. W. van der Kouwe
- Abstract summary: In fetal-brain MRI, head-pose changes between prescription and acquisition present a challenge to obtaining the standard sagittal, coronal and axial views.
We propose a robust head-pose detection algorithm using full-uterus scout scans (EPI) which take 5 seconds to acquire.
The success rate of the method exceeds 94% in the third trimester, outperforming a trained technologist by up to 20%.
- Score: 2.0526610003396657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In fetal-brain MRI, head-pose changes between prescription and acquisition
present a challenge to obtaining the standard sagittal, coronal and axial views
essential to clinical assessment. As motion limits acquisitions to thick slices
that preclude retrospective resampling, technologists repeat ~55-second
stack-of-slices scans (HASTE) with incrementally reoriented field of view
numerous times, deducing the head pose from previous stacks. To address this
inefficient workflow, we propose a robust head-pose detection algorithm using
full-uterus scout scans (EPI) which take ~5 seconds to acquire. Our ~2-second
procedure automatically locates the fetal brain and eyes, which we derive from
maximally stable extremal regions (MSERs). The success rate of the method
exceeds 94% in the third trimester, outperforming a trained technologist by up
to 20%. The pipeline may be used to automatically orient the anatomical
sequence, removing the need to estimate the head pose from 2D views and
reducing delays during which motion can occur.
Related papers
- A self-attention model for robust rigid slice-to-volume registration of functional MRI [4.615338063719135]
Head motion during fMRI scans can result in distortion, biased analyses, and increased costs.
We introduce an end-to-end SVR model for aligning 2D fMRI slices with a 3D reference volume.
Our model achieves competitive performance in terms of alignment accuracy compared to state-of-the-art deep learning-based methods.
arXiv Detail & Related papers (2024-04-06T08:02:18Z) - Estimating Head Motion from MR-Images [0.0]
Head motion is an omnipresent confounder of magnetic resonance image (MRI) analyses.
We introduce a deep learning method to predict in-scanner head motion directly from T1-weighted (T1w), T2-weighted (T2w) and fluid-attenuated inversion recovery (FLAIR) images.
arXiv Detail & Related papers (2023-02-28T11:03:08Z) - AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion
correction of multi-slice fetal brain MRI [8.087220876070477]
We present a novel Affinity Fusion-based Framework for Iteratively Random Motion correction of the multi-slice fetal brain MRI.
It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion.
The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data.
arXiv Detail & Related papers (2022-05-12T02:54:55Z) - Deep Learning Framework for Real-time Fetal Brain Segmentation in MRI [15.530500862944818]
We analyze the speed-accuracy performance of a variety of deep neural network models.
We devised a symbolically small convolutional neural network that combines spatial details at high resolution with context features extracted at lower resolutions.
We trained our model as well as eight alternative, state-of-the-art networks with manually-labeled fetal brain MRI slices.
arXiv Detail & Related papers (2022-05-02T20:43:14Z) - Predicting 4D Liver MRI for MR-guided Interventions [2.9699476315275772]
Organ motion poses an unresolved challenge in image-guided interventions.
We propose a novel approach for real-time, high-resolution 4D MRI with large fields of view.
We show that small training sizes with short acquisition times down to 2min can already achieve promising results.
arXiv Detail & Related papers (2022-02-25T11:34:25Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Simultaneous Estimation of X-ray Back-Scatter and Forward-Scatter using
Multi-Task Learning [59.17383024536595]
Back-scatter significantly contributes to patient (skin) dose during complicated interventions.
Forward-scattered radiation reduces contrast in projection images and introduces artifacts in 3-D reconstructions.
We propose a novel approach combining conventional techniques with learning-based methods to simultaneously estimate the forward-scatter reaching the detector.
arXiv Detail & Related papers (2020-07-08T10:47:37Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.