Estimating Head Motion from MR-Images
- URL: http://arxiv.org/abs/2302.14490v1
- Date: Tue, 28 Feb 2023 11:03:08 GMT
- Title: Estimating Head Motion from MR-Images
- Authors: Clemens Pollak, David K\"ugler and Martin Reuter
- Abstract summary: Head motion is an omnipresent confounder of magnetic resonance image (MRI) analyses.
We introduce a deep learning method to predict in-scanner head motion directly from T1-weighted (T1w), T2-weighted (T2w) and fluid-attenuated inversion recovery (FLAIR) images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Head motion is an omnipresent confounder of magnetic resonance image (MRI)
analyses as it systematically affects morphometric measurements, even when
visual quality control is performed. In order to estimate subtle head motion,
that remains undetected by experts, we introduce a deep learning method to
predict in-scanner head motion directly from T1-weighted (T1w), T2-weighted
(T2w) and fluid-attenuated inversion recovery (FLAIR) images using motion
estimates from an in-scanner depth camera as ground truth. Since we work with
data from compliant healthy participants of the Rhineland Study, head motion
and resulting imaging artifacts are less prevalent than in most clinical
cohorts and more difficult to detect. Our method demonstrates improved
performance compared to state-of-the-art motion estimation methods and can
quantify drift and respiration movement independently. Finally, on unseen data,
our predictions preserve the known, significant correlation with age.
Related papers
- Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
We propose a novel self-supervised deep learning-based framework, dubbed the Local-All Pass Attention Network (LAPANet) for non-rigid motion estimation.
LAPANet was evaluated on cardiac motion estimation across various sampling trajectories and acceleration rates.
The achieved high temporal resolution (less than 5 ms) for non-rigid motion opens new avenues for motion detection, tracking and correction in dynamic and real-time MRI applications.
arXiv Detail & Related papers (2024-10-24T15:19:59Z) - IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations [2.2265038612930663]
Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times.
Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results.
We present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs)
Our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
arXiv Detail & Related papers (2024-07-03T10:14:33Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - DeepTag: An Unsupervised Deep Learning Method for Motion Tracking on
Cardiac Tagging Magnetic Resonance Images [10.434681088538866]
We propose a novel deep learning-based fully unsupervised method for in vivo motion tracking on t-MRI images.
Our method has been validated on a representative clinical t-MRI dataset.
arXiv Detail & Related papers (2021-03-04T00:42:11Z) - Assessing Lesion Segmentation Bias of Neural Networks on Motion
Corrupted Brain MRI [3.9694334747397484]
We quantify the impact that different levels of motion artifacts have on the performance of neural networks engaged in a lesion segmentation task.
Our results suggest that a network trained using curriculum learning is effective at compensating for different levels of motion artifacts.
arXiv Detail & Related papers (2020-10-12T21:06:40Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
We propose a recurrent neural network to simultaneously extract both spatial and temporal features from motion-blurred cine cardiac images.
The experimental results demonstrate substantially improved image quality on two clinical test datasets.
arXiv Detail & Related papers (2020-06-23T01:55:57Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.