論文の概要: Field Extraction from Forms with Unlabeled Data
- arxiv url: http://arxiv.org/abs/2110.04282v1
- Date: Fri, 8 Oct 2021 17:50:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-11 14:08:09.466324
- Title: Field Extraction from Forms with Unlabeled Data
- Title(参考訳): ラベルなしデータを用いたフォームからのフィールド抽出
- Authors: Mingfei Gao, Zeyuan Chen, Nikhil Naik, Kazuma Hashimoto, Caiming
Xiong, Ran Xu
- Abstract要約: 本研究では,未ラベルデータを用いたフォームからフィールド抽出を行う新しいフレームワークを提案する。
我々は,未ラベル形式からノイズの多い擬似ラベルをマイニングするためのルールベース手法を開発した。
- 参考スコア(独自算出の注目度): 53.909807775291746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel framework to conduct field extraction from forms with
unlabeled data. To bootstrap the training process, we develop a rule-based
method for mining noisy pseudo-labels from unlabeled forms. Using the
supervisory signal from the pseudo-labels, we extract a discriminative token
representation from a transformer-based model by modeling the interaction
between text in the form. To prevent the model from overfitting to label noise,
we introduce a refinement module based on a progressive pseudo-label ensemble.
Experimental results demonstrate the effectiveness of our framework.
- Abstract(参考訳): ラベルなしデータを用いたフォームからのフィールド抽出を行うための新しいフレームワークを提案する。
トレーニングプロセスのブートストラップとして,未ラベル形式からノイズの多い擬似ラベルを抽出するルールベースの手法を開発した。
擬似ラベルからの監視信号を用いて,テキスト間の相互作用をモデル化し,変圧器モデルから識別トークン表現を抽出する。
このモデルがラベルノイズに過度に適合することを防止するため,プログレッシブ擬似ラベルアンサンブルに基づくリファインメントモジュールを導入する。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- Reduction-based Pseudo-label Generation for Instance-dependent Partial Label Learning [41.345794038968776]
本稿では,誤り候補ラベルの影響を軽減するために,リダクションに基づく擬似ラベルを活用することを提案する。
推定モデルから生成した擬似ラベルと比較して,減算に基づく擬似ラベルはベイズ最適分類器との整合性が高いことを示す。
論文 参考訳(メタデータ) (2024-10-28T07:32:20Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
本稿では,トレーニング中にノイズラベル付きおよび未処理データを受け入れる条件付き画像生成フレームワークを提案する。
本稿では,ラベルのないデータに新たなラベルを割り当てながら,逆行訓練にインスタンスワイドを割り当てるソフトカリキュラム学習を提案する。
実験により,本手法は,定量および定性性能の両面において,既存の半教師付き・ラベル付きロバストな手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-17T08:31:59Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
半教師付きセマンティックセマンティックセグメンテーションのための新しい手法である GuidedMix-Net を提案する。
ラベル付き情報を使用して、ラベルなしのインスタンスの学習をガイドする。
競合セグメンテーションの精度を達成し、mIoUを以前のアプローチに比べて+7$%大きく改善する。
論文 参考訳(メタデータ) (2021-12-28T06:48:03Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
半教師付きセマンティックセマンティックセグメンテーションのための新しい手法である GuidedMix-Net を提案する。
まず、ラベル付きデータとラベルなしデータの間に特徴アライメントの目的を導入し、類似した画像対をキャプチャする。
MITransは、ラベルなしデータのさらなるプログレッシブな精細化のための強力な知識モジュールであることが示されている。
ラベル付きデータに対する教師付き学習とともに、ラベル付きデータの予測が生成した擬似マスクとともに学習される。
論文 参考訳(メタデータ) (2021-06-29T02:48:45Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - Semi-supervised Relation Extraction via Incremental Meta Self-Training [56.633441255756075]
半教師付き関係抽出法は,限られたサンプルからの学習に加え,ラベルのないデータを活用することを目的としている。
既存の自己学習手法は段階的なドリフト問題に悩まされ、未ラベルデータにノイズのある擬似ラベルが組み込まれている。
本稿では,リレーショナルラベル生成ネットワークが,メタオブジェクトとしてリレーショナル分類ネットワークを成功・失敗に導くことによって,擬似ラベルの品質評価を生成するメタSREという手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T03:54:11Z) - Improving Generalization of Deep Fault Detection Models in the Presence
of Mislabeled Data [1.3535770763481902]
ラベルノイズを用いた頑健なトレーニングのための新しい2段階フレームワークを提案する。
最初のステップでは、仮説空間の更新に基づいて、外れ値(ラベルのつかないサンプルを含む)を識別する。
第2のステップでは、識別されたアウトレイラとデータ拡張技術に基づいて、トレーニングデータを修正するための異なるアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-30T12:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。