Bose--Einstein condensation for particles with repulsive short-range
pair interactions in a Poisson random external potential in $\mathbb R^d$
- URL: http://arxiv.org/abs/2110.04587v1
- Date: Sat, 9 Oct 2021 14:52:14 GMT
- Title: Bose--Einstein condensation for particles with repulsive short-range
pair interactions in a Poisson random external potential in $\mathbb R^d$
- Authors: Joachim Kerner and Maximilian Pechmann
- Abstract summary: We study Bose gases in $d$ dimensions, $d ge 2$, with short-range repulsive pair interactions, at positive temperature, in the canonical ensemble and in the thermodynamic limit.
For sufficiently strong interparticle interactions, we show that almost surely there cannot be Bose-Einstein condensation into a sufficiently localized, normalized one-particle state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study Bose gases in $d$ dimensions, $d \ge 2$, with short-range repulsive
pair interactions, at positive temperature, in the canonical ensemble and in
the thermodynamic limit. We assume the presence of hard Poissonian obstacles
and focus on the non-percolation regime. For sufficiently strong interparticle
interactions, we show that almost surely there cannot be Bose--Einstein
condensation into a sufficiently localized, normalized one-particle state. The
results apply to the eigenstates of the underlying one-particle Hamiltonian.
Related papers
- Hamiltonians for Quantum Systems with Contact Interactions [49.1574468325115]
We show that in the limit one obtains the one-body Hamiltonian for the light particle subject to $N$ (non-local) point interactions placed at fixed positions.
We will verify that such non-local point interactions do not exhibit the ultraviolet pathologies that are present in the case of standard local point interactions.
arXiv Detail & Related papers (2024-07-09T14:04:11Z) - Gauge potentials and vortices in the Fock space of a pair of periodically driven Bose-Einstein condensates [0.0]
We study the coupled dynamics of two species of Bose-Einstein condensates (BECs) in a double well potential.
The ground state of the Floquet operator undergoes a transition from a Gaussian state to a quantized vortex state in Fock space.
arXiv Detail & Related papers (2024-03-31T02:24:05Z) - On Bose-Einstein condensation in interacting Bose gases in the
Kac-Luttinger model [0.0]
We study interacting Bose gases of dimensions $2le d in mathbb N$ at zero temperature.
We prove (complete) Bose-Einstein condensation in probability or with probability almost one into the minimizer of a Hartree-type functional.
arXiv Detail & Related papers (2023-12-22T01:13:07Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity [77.34726150561087]
We study the Hamiltonian for a system of N identical bosons interacting with an impurity.
We introduce a three-body force acting at short distances.
The effect of this force is to reduce to zero the strength of the zero-range interaction between two particles.
arXiv Detail & Related papers (2022-02-25T15:34:06Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Bose-Einstein Condensation and Supersolids [0.0]
We consider interacting Bose particles in an external potential.
A Bose-Einstein condensate is possible at finite temperatures that describes a supersolid in 3D.
For 2D, a self-organized supersolid exists for finite temperatures provided the interaction between bosons is nonlocal and of infinitely long-range.
arXiv Detail & Related papers (2020-12-24T09:36:46Z) - Solvable model of a generic driven mixture of trapped Bose-Einstein
condensates and properties of a many-boson Floquet state at the limit of an
infinite number of particles [0.0]
A solvable model of a periodically-driven mixture of Bose-Einstein condensates is presented.
The model generalizes the harmonic-interaction model for the time-dependent domain.
We investigate the imprinting of momentum and its fluctuations when steering a Bose-Einstein condensate by an interacting bosonic impurity.
arXiv Detail & Related papers (2020-10-29T15:01:59Z) - On the effect of repulsive interactions on Bose-Einstein condensation in
the Luttinger-Sy model [0.0]
We investigate the effect of repulsive pair interactions on Bose-Einstein condensation in a random one-dimensional system known as the Luttinger-Sy model at positive temperature.
We prove in both cases that for sufficiently strong interactions all eigenstates of the non-interacting one-particle Luttinger-Sy Hamiltonian as well as any sufficiently localized one-particle state are almost surely not macroscopically occupied.
arXiv Detail & Related papers (2020-07-13T15:36:23Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.