The Yukawa interaction in ordinary quantum mechanics
- URL: http://arxiv.org/abs/2110.04681v2
- Date: Tue, 12 Apr 2022 18:00:11 GMT
- Title: The Yukawa interaction in ordinary quantum mechanics
- Authors: Daniel Schubring
- Abstract summary: The Yukawa interaction is considered in 0+1 dimensions as a pedagogical example to illustrate quantum field theory methods.
From the quantum mechanical point of view the system is trivially exactly solvable, but this can be difficult to see from the path integral perspective.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Yukawa interaction is considered in 0+1 dimensions as a pedagogical
example to illustrate quantum field theory methods. From the quantum mechanical
point of view the system is trivially exactly solvable, but this can be
difficult to see from the path integral perspective. It is shown how despite
initial appearances the perturbation series in terms of Feynman diagrams is
consistent with the quantum mechanical picture for finite temperature.
Related papers
- Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - On Observation and The Completion of Quantum Mechanics [0.0]
We show how Schr"odinger's cat may be understood as a quantum filter.
It provides an intuitively realistic model and an insight into how quantum filtering works.
arXiv Detail & Related papers (2024-02-01T10:22:19Z) - On the Path Integral Formulation of Wigner-Dunkl Quantum Mechanics [0.0]
Feynman's path integral approach is studied in the framework of the Wigner-Dunkl deformation of quantum mechanics.
We look at the Euclidean time evolution and the related Dunkl process.
arXiv Detail & Related papers (2023-12-20T10:23:34Z) - Equivalence Principle for Quantum Mechanics in the Heisenberg Picture [0.0]
We present an exact quantum observable analog of the weak equivalence principle for a relativistic' quantum particle.
The quantum geodesic equations are obtained from Heisenberg equations of motion as an exact analog of a fully covariant classical Hamiltonian evolution picture.
arXiv Detail & Related papers (2023-09-05T06:39:01Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - The Measurement Process in Relational Quantum Mechanics [0.0]
Motivated by Breuer's claim that it is impossible for an observer to distinguish all states of a system in which it is contained, wave function collapse is tied to self observation in the Schmidt biorthonormal decomposition of entangled systems.
This approach provides quantum mechanics in general and relational quantum mechanics in particular with a clean, well motivated explanation of the measurement process and wave function collapse.
arXiv Detail & Related papers (2020-12-21T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.