On the Path Integral Formulation of Wigner-Dunkl Quantum Mechanics
- URL: http://arxiv.org/abs/2312.12895v3
- Date: Mon, 29 Jan 2024 07:20:26 GMT
- Title: On the Path Integral Formulation of Wigner-Dunkl Quantum Mechanics
- Authors: Georg Junker
- Abstract summary: Feynman's path integral approach is studied in the framework of the Wigner-Dunkl deformation of quantum mechanics.
We look at the Euclidean time evolution and the related Dunkl process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feynman's path integral approach is studied in the framework of the
Wigner-Dunkl deformation of quantum mechanics. We start with reviewing some
basics from Dunkl theory and investigate the time evolution of a Gaussian wave
packet, which exhibits the same dispersion relation as observed in standard
quantum mechanics. Feynman's path integral approach is then extended to
Wigner-Dunkl quantum mechanics. The harmonic oscillator problem is solved
explicitly. We then look at the Euclidean time evolution and the related Dunkl
process. This process, which exhibit jumps, can be represented by two
continuous Bessel processes, one with reflection and one with absorbtion at the
origin. The Feynman-Kac path integral for the harmonic oscillator problem is
explicitly calculated.
Related papers
- Time-Dependent Dunkl-Schrödinger Equation with an Angular-Dependent Potential [0.0]
The Schr"odinger equation is a fundamental equation in quantum mechanics.
Over the past decade, theoretical studies have focused on adapting the Dunkl derivative to quantum mechanical problems.
arXiv Detail & Related papers (2024-08-04T13:11:52Z) - One-dimensional Dunkl Quantum Mechanics: A Path Integral Approach [0.0]
We derive the propagator in one-dimensional Wigner-Dunkl quantum mechanics.
We deduce the energy spectra and the corresponding bound-state wave functions from the spectral decomposition of the propagator.
arXiv Detail & Related papers (2024-07-17T15:14:44Z) - Exploring the transition between Quantum and Classical Mechanics [0.0]
We investigate the transition from quantum to classical mechanics using a one-dimensional free particle model.
We find that the quantum probability density coincides with the classical normal distribution of the particle's final position.
We propose a novel approach to recover the classical distribution from the quantum one.
arXiv Detail & Related papers (2024-05-28T20:18:16Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - The foundations of quantum theory and its possible generalizations [0.0]
Possible generalizations of quantum theory permitting to describe in a unique way the development of the quantum system and the measurement process are discussed.
The application of tachyonic field to overcome divergences arising in this equation is analyzed.
arXiv Detail & Related papers (2021-03-09T11:44:48Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Feynman Functional Integral in the Fokker Theory [62.997667081978825]
equivalence of two formulations of Fokker's quantum theory is proved.
The common basis for the two approaches is the generalized canonical form of Fokker's action.
arXiv Detail & Related papers (2020-11-11T12:10:01Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.